[1] Hicks R G, Monismith C L. Factors influencing the resilient response of granular materials [J]. Highway Research Record, 1971(345): 15-31.
[2] Uzan J. Characterization of granular material [J]. Transportation Research Record, 1985, 1022: 52-59.
[3] Hjelmstad K D, Taciroglu E. Analysis and implementation of resilient modulus models for granular solids [J]. Journal of Engineering Mechanics, 2000, 126(8): 821-830. DOI:10.1061/(asce)0733-9399(2000)126:8(821).
[4] Kuo C M, Huang C W. Three-dimensional pavement analysis with nonlinear subgrade materials [J]. Journal of Materials in Civil Engineering, 2006, 18(4): 537-544. DOI:10.1061/(asce)0899-1561(2006)18:4(537).
[5] Wang H, Imad L A Q. Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading [J]. Journal of Engineering Mechanics, 2013, 139(1): 29-38. DOI:10.1061/(asce)em.1943-7889.0000465.
[6] Li M Y, Wang H, Xu G J, et al. Finite element modeling and parametric analysis of viscoelastic and nonlinear pavement responses under dynamic FWD loading [J]. Construction and Building Materials, 2017, 141: 23-35. DOI:10.1016/j.conbuildmat.2017.02.096.
[7] Gu F, Luo X, Luo R, et al. Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test [J]. Construction and Building Materials, 2016, 122: 214-230. DOI:10.1016/j.conbuildmat.2016.06.081.
[8] Claudia Z, Yugantha P, William H. Matric suction prediction model in new aashto mechanistic-empirical pavement design guide [J]. Transportation Research Record, 2009, 2101: 53-62. DOI:10.3141/2101-07.
[9] Khoury N, Zaman M. Correlation between resilient modulus, moisture variation, and soil suction for subgrade soils [J]. Transportation Research Record, 2004, 1874: 99-107. DOI:10.3141/1874-11.
[10] Han Z, Vanapalli S K. Model for predicting resilient modulus of unsaturated subgrade soil using soil-water characteristic curve [J]. Canadian Geotechnical Journal, 2015, 52(10): 1605-1619. DOI:10.1139/cgj-2014-0339.
[11] Liang R Y, Rabab’Ah S, Khasawneh M. Predicting moisture-dependent resilient modulus of cohesive soils using soil suction concept [J]. Journal of Transportation Engineering, 2008, 134(1): 34-40. DOI:10.1061/(asce)0733-947x(2008)134:1(34).
[12] Cary C E, Zapata C E. Resilient modulus for unsaturated unbound materials [J]. Road Materials and Pavement Design, 2011, 12(3): 615-638. DOI:10.1080/14680629.2011.9695263.
[13] Wang L J, Liu S H, Fu Z Z, et al. Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils [J]. Journal of Central South University, 2015, 22(5): 1892-1900. DOI:10.1007/s11771-015-2708-2.
[14] Saad B. Analysis of excess water impact on the structural performance of flexible pavements [J]. International Journal of Pavement Engineering, 2014, 15(5): 409-426. DOI:10.1080/10298436.2013.790546.
[15] Hu R, Chen Y F, Liu H H, et al. A coupled two-phase fluid flow and elastoplastic deformation model for unsaturated soils: Theory, implementation, and application [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1023-1058. DOI:10.1002/nag.2473.
[16] Gu F, Luo X, Zhang Y, et al. Modeling of unsaturated granular materials in flexible pavements [C]// E3S Web of Conferences. Paris. France, 2016:20002. DOI:10.1051/e3sconf/20160920002.
[17] Bishop A W. The principle of effective stress [J]. Teknisk Ukeblad, 1959, 39: 859-863.
[18] Khalili N, Khabbaz M. Application of effective stress concept to unsaturated soils [C]// Proceedings of the 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge. Hobart, Australia, 1999: 849–854.
[19] Komolvilas V, Kikumoto M. Fully undrained cyclic loading simulation on unsaturated soils using an elastoplastic model for unsaturated soils [C]// E3S Web of Conferences. Paris, France, 2016, 9: 17008. DOI:10.1051/e3sconf/20160917008.
[20] Fredlund D G, Xing A. Equations for the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. DOI:10.1139/t94-061.
[21] Seed H, Mitry F, Monosmith C, et al. Prediction of pavement deflection from laboratory repeated load tests. NCHRP Report No.35 [R]. Washington, DC: National Cooperative Highway Research Program, 1967.
[22] Inc. ARA. Guide for the mechanistic empirical design of new and rehabilitated pavement structures. Final report. NCHRP 1-37A [R]. Washington, DC: Transportation Board of the National Academies, 2004.
[23] Chen R. Experimental study and constitutive modelling of stress-dependent coupled hydraulic hysteresis and mechanical behaviour of an unsaturated soil [D]. Hong Kong: Civil Engineering Department, Hong Kong University of Science and Technology, 2007.
[24] Salour F, Erlingsson S. The influence of groundwater level on the structural behaviour of a pavement structure using fwd [C]//The Ninth International Conference on the Bearing Capacity of Roads, Railways, and Airfields. Trondheim, Norway, 2013: 25-27.