[1] He K, Zhang Y, Zhu Y, et al. A hybrid indoor positioning system based on UWB and inertial navigation [C]// IEEE International Conference on Wireless Communications & Signal Processing. Hefei, China, 2015: 1-5.
[2] van M T, van Tuan N, Son T T, et al. Weighted k-nearest neighbour model for indoor VLC positioning[J]. IET Communications, 2017, 11(6): 864-871. DOI:10.1049/iet-com.2016.0961.
[3] Nakazawa Y, Makino H, Nishimori K, et al. LED-tracking and ID-estimation for indoor positioning using visible light communication [C]// IEEE International Conference on Indoor Positioning and Indoor Navigation. Busan, South Korea, 2015:87-94.
[4] Wu C S, Yang Z, Liu Y H. Smartphones based crowdsourcing for indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 444-457. DOI:10.1109/tmc.2014.2320254.
[5] Li Q L, Wang J Y, Huang T, et al. Three-dimensional indoor visible light positioning system with a single transmitter and a single tilted receiver[J]. Optical Engineering, 2016, 55(10): 106103. DOI:10.1117/1.oe.55.10.106103.
[6] Aghili F, Su C Y. Robust relative navigation by integration of ICP and adaptive Kalman filter using laser scanner and IMU[J]. ASME Transactions on Mechatronics, 2016, 21(4): 2015-2026. DOI:10.1109/tmech.2016.2547905.
[7] Won S H P, Melek W W, Golnaraghi F. A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1787-1798. DOI:10.1109/tie.2009.2032431.
[8] Lü H, Feng L H, Yang A Y, et al. High accuracy VLC indoor positioning system with differential detection[J].IEEE Photonics Journal, 2017, 9(3): 1-13. DOI:10.1109/jphot.2017.2698240.
[9] Krommenacker N, Vásquez O C, Alfaro M D, et al. A self-adaptive cell-ID positioning system based on visible light communications in underground mines [C]// 2016 IEEE International Conference on Automatica. Curico, Chile, 2016: 16525691. DOI:10.1109/ICA-ACCA.2016.7778427.
[10] Guan W P, Wu Y X, Wen S S, et al. A novel three-dimensional indoor positioning algorithm design based on visible light communication [J]. Optics Communications, 2017, 392:282-293.
[11] Jimenez Ruiz A R, Seco Granja F, Prieto Honorato J C, et al. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(1): 178-189. DOI:10.1109/tim.2011.2159317.
[12] Liu W L. LiDAR-IMU time delay calibration based on iterative closest point and iterated sigma point Kalman filter[J]. Sensors, 2017, 17(3):539. DOI:10.3390/s17030539.
[13] Kumar G A, Patil A K, Patil R, et al. A LiDAR and IMU integrated indoor navigation system for UAVs and its application in real-time pipeline classification[J]. Sensors, 2017, 17(6): 1268. DOI:10.3390/s17061268.
[14] Zhao Y W. Performance evaluation of cubature Kalman filter in a GPS/IMU tightly-coupled navigation system[J]. Signal Processing, 2016, 119: 67-79. DOI:10.1016/j.sigpro.2015.07.014.
[15] Zhang X L, Duan J Y, Fu Y G, et al. Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator[J]. Journal of Lightwave Technology, 2014, 32(21): 4180-4186. DOI:10.1109/jlt.2014.2349530.
[16] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100-107. DOI:10.1109/tce.2004.1277847.
[17] Nguyen N T, Nguyen N H, Nguyen V H, et al. Improvement of the VLC localization method using the extended Kalman filter [C]// 2014 IEEE Region 10 Conference. Bangkok, Thailand, 2014: 14885864. DOI:10.1109/TENCON.2014.7022416.
[18] Fang X M, Nan L, Jiang Z H, et al.Robust node position estimation algorithms for wireless sensor networks based on improved adaptive Kalman filters[J]. Computer Communications, 2017, 101: 69-81. DOI:10.1016/j.comcom.2016.11.005.
[19] González R, Giribet J I, Patiño H D. An approach to benchmarking of loosely coupled low-cost navigation systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2014, 21(3): 272-287. DOI:10.1080/13873954.2014.952642.
[20] Zhuang Y, El-Sheimy N. Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation[J]. IEEE Sensors Journal, 2016, 16(1): 224-234. DOI:10.1109/jsen.2015.2477444.