|Table of Contents|

[1] Jia Zhen, Li Jianqing,. Multi-target range and velocity measurementsof a digital phased array radar system [J]. Journal of Southeast University (English Edition), 2018, 34 (4): 459-465. [doi:10.3969/j.issn.1003-7985.2018.04.007]
Copy

Multi-target range and velocity measurementsof a digital phased array radar system()
数字相控阵雷达系统中多目标距离与速度的测量
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 4
Page:
459-465
Research Field:
Computer Science and Engineering
Publishing date:
2018-12-20

Info

Title:
Multi-target range and velocity measurementsof a digital phased array radar system
数字相控阵雷达系统中多目标距离与速度的测量
Author(s):
Jia Zhen1 Li Jianqing2
1Jiangsu Automation Research Institute, Lianyungang 222061, China
2School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
贾贞1 李建清2
1江苏自动化研究所, 连云港 222061; 2东南大学仪器科学与工程学院, 南京 210096
Keywords:
phased array radar echo pulse compression moving target
相控阵 雷达回波 脉冲压缩 运动目标
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2018.04.007
Abstract:
As the core of a digital phased array radar system, a radar signal processing environment is created to measure multi-target range and velocity information. The radar echo signal is achieved by superposing target echo, noise, clutter and jamming signals linearly. Considering that these signals have many types, two typical combinations are selected to construct the multi-target echo signal and the simulated echo signal is used as the input of the signal processing environment. This environment mainly adopts pulse compression, moving target indication and detection technologies to process the echo signal. It is found that the frequency domain method is more desirable for the pulse compression effect than the time domain method, and multi-target range information can be measured from the moving target indication result after using a double delay canceller. A new moving target detecting method is proposed, which can present the positive and negative velocity accurately with the multi-target range and velocity measured simultaneously. Simulation results indicate that the potential targets are detected from the chaotic radar echo signals successfully, and their range and velocity can be figured out correctly in the built radar signal processing environment.
为了实现多个目标距离和速度信息的测量, 构建了数字相控阵雷达系统的核心部分——雷达信号处理环境.雷达回波信号可由目标回波、噪声、杂波和干扰信号经过线性叠加后获得.考虑到这4种信号种类繁多, 故挑选出2种典型组合来构建多目标回波信号, 并将其作为雷达信号处理环境的输入.该信号处理环境主要应用脉冲压缩、运动目标显示和运动目标检测3种处理技术.经分析发现, 频域方法的脉冲压缩效果要优于时域方法;多目标的距离信息可从使用双延时对消器处理后的运动目标显示结果中测量得到;提出了一种新的运动目标检测技术, 该技术能够正确表示运动目标的正负向速度, 并同时测量出目标的距离和速度信息.仿真结果表明, 在构建的雷达信号处理环境中成功地从杂乱的雷达回波信号当中检测出多个目标, 并准确地获得这些目标的距离和速度信息.

References:

[1] Wang T, Wan X, He J. Simulation of phased array radar systems [J]. Computers and Modernization, 2014, 2(47): 209-218.
[2] Talisa S H, O’Haver K W, Comberiate T M, et al. Benefits of digital phased array radars [J]. Proceedings of the IEEE, 2016, 104(3): 530-543.DOI:10.1109/jproc.2016.2515842.
[3] Jia Z, Zhou R. Analysis and simulation of multi-target echo signals from a phased array radar [C]//2017 International Conference on Electronic Information Technology and Computer Engineering. Zhuhai, China, 2017, 128: 02005-1-02005-5.DOI:10.1051/matecconf/201712802005.
[4] He Y, Wang H, Wang L. Design and implementation of radar signal processing system based on design patterns [C]//The 8th International Symposium on Computational Intelligence and Design. Hangzhou, China, 2015, 104: 85-88.
[5] Manna M L, Fuhrmann D R. Hybrid-MIMO and phased array receive signal processing [C]//2016 IEEE Radar Conference. Philadelphia, USA, 2016: 1-4.
[6] Kikuchi H, Yoshikawa E, Ushio T, et al. Adaptive pulse compression technique for X-band phased array weather radar [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1810-1814.DOI:10.1109/lgrs.2017.2737032.
[7] Li X, Du J S. Performance optimization algorithm of radar signal processing system[J]. Cluster Computing, 2017, 20(1): 359-370. DOI:10.1007/s10586-016-0710-6.
[8] Baig N A, Hussain A. Radar signal processing for target range Doppler and DoA estimation [C]//The 14th International Bhurban Conference on Applied Sciences & Technology. Islamabad, Pakistan, 2017: 820-825.
[9] Wu W, He C, Zhang W, et al. Research on multi-resolution modeling and simulation of radar signal processing system [C]//The 13th IEEE International Conference on Signal Processing. Chengdu, China, 2016: 1493-1497.
[10] Cooper K B, Durden S L, Cochrane C J, et al. Using FMCW doppler radar to detect targets up to the maximum unambiguous range[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 339-343. DOI:10.1109/lgrs.2016.2640954.
[11] Ramalli A, Dallai A, Boni E. Pulse compression: From radar to real-time ultrasound systems [J]. Lecture Notes in Electrical Engineering, 2017, 429: 221-227. DOI:10.1007/978-3-319-55071-8_29.
[12] Beauchamp R M, Tanelli S, Peral E, et al. Pulse compression waveform and filter optimization for spaceborne cloud and precipitation radar [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 915-931.DOI:10.1109/tgrs.2016.2616898.
[13] Cai J X, Zhang Y. General purpose graphic processing unit implementation of adaptive pulse compression algorithms[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035009. DOI:10.1117/1.jrs.11.035009.
[14] Yin Z H, Yu B C, Wang Z F, et al. Performance analysis of radar pulse compression signals[J]. Advanced Materials Research, 2013, 734-737: 3248-3251. DOI:10.4028/www.scientific.net/amr.734-737.3248.
[15] Aubry A, Maio A D, Carotenuto V, et al. Radar phase noise modeling and effects—part Ⅰ: MTI filters [J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 698-711. DOI:10.1109/taes.2015.140549.
[16] Sun L, Jiang K, Wu B C, et al. A novel space-time equivalent reconstruction method for MIMO SAR/MTI system [J]. Radar Science and Technology, 2011, 9(2): 120-124. DOI:10.3969/j.issn.1672-2337.2011.02.005. (in Chinese)
[17] Hyder M M, Mahata K. Maximum a posteriori based approach for target detection in MTI radar [J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 392-401.DOI:10.1109/jetcas.2012.2217095.
[18] Oveis A H, Sebt M A. Compressed sensing-based ground MTI with clutter rejection scheme for synthetic aperture radar[J]. IET Signal Processing, 2017, 11(2): 155-164. DOI:10.1049/iet-spr.2016.0156.
[19] Wang P, Li H B, Himed B. Moving target detection using distributed MIMO radar in clutter with nonhomogeneous power[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4809-4820. DOI:10.1109/tsp.2011.2160861.
[20] Li N, Cui G L, Kong L J, et al. MIMO radar moving target detection against compound-Gaussian clutter[J]. Circuits, Systems, and Signal Processing, 2014, 33(6): 1819-1839. DOI:10.1007/s00034-013-9718-9.
[21] Li N, Cui G L, Kong L J, et al. Moving target detection for polarimetric multiple-input multiple-output radar in Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2015, 9(3): 285-298. DOI:10.1049/iet-rsn.2014.0157.

Memo

Memo:
Biographies: Jia Zhen(1987—), male, doctor, senior engineer; Li Jianqing(corresponding author), male, doctor, professor, ljq@seu.edu.cn.
Foundation items: The “13th Five-Year” Equipment Pre-Research Common Technology Fund of China(No.41411010202), the National Natural Science Foundation of China(No.61571113), the Natural Science Foundation of Jiangsu Province(No.BK20160697).
Citation: Jia Zhen, Li Jianqing.Multi-target range and velocity measurements of a digital phased array radar system[J].Journal of Southeast University(English Edition), 2018, 34(4):459-465.DOI:10.3969/j.issn.1003-7985.2018.04.007.
Last Update: 2018-12-20