[1] Biljecki F, Ledoux H, van Oosterom P. Transportation mode-based segmentation and classification of movement trajectories[J].International Journal of Geographical Information Science, 2013, 27(2): 385-407.
[2] Mun M Y, Seo Y W. Everyday mobility context classification using radio beacons[C]//2013 IEEE 10th Consumer Communications and Networking Conference. Las Vegas, NV, USA, 2013: 112-117.
[3] Bolbol A, Cheng T, Tsapakis I, et al. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification[J].Computers, Environment and Urban Systems, 2012, 36(6): 526-537.
[4] Patel D, Sheng C, Hsu W, et al. Incorporating duration information for trajectory classification[C]//2012 IEEE 28th International Conference on Data Engineering. Washington, DC, USA, 2012: 1132-1143.
[5] Patel D. Incorporating duration and region associationinformation in trajectory classification[J]. Journal of Location Based Services, 2013, 7(4): 246-271.
[6] Zheng Y, Chen Y K, Li Q N, et al. Understanding transportation modes based on GPS data for web applications[J].ACM Transactions on the Web, 2010, 4(1): 1-36.
[7] Zheng Y, Li Q, Chen Y, et al. Understanding mobility based on GPS data[C]//International Conference on Ubiquitous Computing. Seoul, Korea, 2008:312-321.
[8] Zhu J, Jiang N, Hu B. The application of multiple movement parameters in trajectory classification for moving objects[J].Journal of Geo-Information Science, 2016, 18(2): 143-150.(in Chinese)
[9] Jahangiri A, Rakha H A. Applying machine learning techniques to transportation mode recognition using mobile phone sensor data[J].IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2406-2417. DOI:10.1109/tits.2015.2405759.
[10] Su X, Caceres H, Tong H H, et al. Online travel mode identification using smartphones with battery saving considerations[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2921-2934.
[11] Lee J G, Han J, Li X, et al.TraClass: Trajectory classification using hierarchical region-based and trajectory-based clustering [J]. Proceedings of the VLDB Endowment, 2008, 1(1):1081-1094.
[12] MacDonald A, Ellen J. Multi-level resolution features for classification of transportation trajectories[C]//2015 IEEE 14th International Conference on Machine Learning and Applications. Miami, FL, USA, 2015: 713-718. DOI:10.1109/ICMLA.2015.66.
[13] Endo Y, Toda H, Nishida K, et al. Deep feature extraction from trajectories for transportation mode estimation[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Auckland, New Zealand, 2016: 54-66.
[14] Visvalingam M, Whyatt J D. The Douglas-Peucker algorithm for line simplification: Re-evaluation through visualization[J]. Computer Graphics Forum, 1990, 9(3): 213-225.
[15] Vrotsou K, Janetzko H, Navarra C, et al. SimpliFly: A methodology for simplification and thematic enhancement of trajectories[J].IEEE Transactions on Visualization and Computer Graphics, 2015, 21(1): 107-121.
[16] Geraty M.Spark_Dbscan[EB/OL].(2014)[2018-06-20].https://github.com/alitouka/spark_dbscan/wiki.
[17] Boukhechba M, Bouzouane A, Bouchard B, et al. Online recognition of people’s activities from raw GPS data: Semantic trajectory data analysis[C]//Proceedings of the 8th ACM International Conference on Pervasive Technologies Related to Assistive Environments. Corfu, Greece, 2015:1-8.