|Table of Contents|

[1] Ding Xiaojin, Song Tiecheng, Zhang Gengxin, et al. Physical-layer security enhancement methodfor wireless HetNets via transmission pair scheduling [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 318-324. [doi:10.3969/j.issn.1003-7985.2019.03.007]
Copy

Physical-layer security enhancement methodfor wireless HetNets via transmission pair scheduling()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
318-324
Research Field:
Information and Communication Engineering
Publishing date:
2019-09-30

Info

Title:
Physical-layer security enhancement methodfor wireless HetNets via transmission pair scheduling
Author(s):
Ding Xiaojin1 2 Song Tiecheng2 Zhang Gengxin1
1Jiangsu Engineering Research Center of Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096
Keywords:
wireless heterogeneous network physical-layer security source-destination pair scheduling
PACS:
TN929.5
DOI:
10.3969/j.issn.1003-7985.2019.03.007
Abstract:
In order to enhance the physical-layer security of wireless transmission in a wireless heterogeneous network(HetNet), a two-stage-based cooperative framework is advocated. To be specific, a source-destination(SD)pair is opportunistically chosen at the beginning of the transmission slot, which can be used to assist the transmissions of other SD pairs. Under this framework, a transmit antenna selection assisted opportunistic SD pair scheduling(TAS-OSDS)scheme is proposed, and the intercept probability(IP)of the proposed TAS-OSDS, the conventional round-robin source-destination pair scheduling(RSDS)and the conventional non-cooperation(non-coop)schemes is also analyzed, where the RSDS and non-coop schemes are used for comparison with the proposed TAS-OSDS. Numerical results show that increasing the number of the SD pairs can effectively reduce the IP of the TAS-OSDS scheme, whereas the IP of the RSDS and the non-coop remain unchanged with an increasing number of the SD pairs. Furthermore, the TAS-OSDS scheme achieves a lower IP than that of the RSDS and the non-coop schemes, showing the superiority of the proposed TAS-OSDS.

References:

[1] Kibria M G, Nguyen K, Villardi G P, et al. A stochastic geometry analysis of multiconnectivity in heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9734-9746. DOI:10.1109/tvt.2018.2863280.
[2] Sharma D, Bhondekar A P. Traffic and energy aware routing for heterogeneous wireless sensor networks[J]. IEEE Communications Letters, 2018, 22(8): 1608-1611. DOI:10.1109/lcomm.2018.2841911.
[3] Zou Y L, Sun M, Zhu J, et al. Security-reliability tradeoff for distributed antenna systems in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(12): 8444-8456. DOI:10.1109/twc.2018.2877610.
[4] Lv T, Gao H, Yang S S. Secrecy transmit beamforming for heterogeneous networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(6): 1154-1170. DOI:10.1109/jsac.2015.2416984.
[5] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387. DOI:10.1002/j.1538-7305.1975.tb02040.x.
[6] Leung-Yan-Cheong S K, Hellman M E. The Gaussian wiretap channel [J]. IEEE Transactions on Information Theory, 1978, 24(4): 451-456. DOI:10.1109/tit.1978.1055917.
[7] Xu L, Cai L, Gao Y S, et al. Security-aware proportional fairness resource allocation for cognitive heterogeneous networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11694-11704. DOI:10.1109/tvt.2018.2873139.
[8] Zou Y L. Physical-layer security for spectrum sharing systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1319-1329. DOI:10.1109/twc.2016.2645200.
[9] Tang W J, Feng S L, Ding Y H, et al. Physical layer security in heterogeneous networks with jammer selection and full-duplex users[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 7982-7995. DOI:10.1109/twc.2017.2755640.
[10] Bang I, Kim S M, Sung D K. Artificial noise-aided user scheduling from the perspective of secrecy outage probability[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7816-7820. DOI:10.1109/tvt.2018.2834562.
[11] Lei H J, Xu M, Ansari I S, et al. On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection[J]. IEEE Transactions on Green Communications and Networking, 2017, 1(2): 192-203. DOI:10.1109/tgcn.2017.2684827.
[12] He D X, Liu C X, Quek T Q S, et al. Transmit antenna selection in MIMO wiretap channels: A machine learning approach[J]. IEEE Wireless Communications Letters, 2018, 7(4): 634-637. DOI:10.1109/lwc.2018.2805902.
[13] Zou Y L, Zhu J, Zheng B Y, et al. An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5438-5445. DOI:10.1109/tsp.2010.2053708.

Memo

Memo:
Biographies: Ding Xiaojin(1981—), male, doctor, lecturer; Song Tiecheng(corresponding author), male, doctor, professor, songtc@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.91738201), the China Postdoctoral Science Foundation(No.2018M632347), the Natural Science Research of Higher Education Institutions of Jiangsu Province(No.18KJB510030), the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University(No.2018D16), the Open Research Fund of Jiangsu Engineering Research Center of Communication and Network Technology, NJUPT.
Citation: Ding Xiaojin, Song Tiecheng, Zhang Gengxin.Physical-layer security enhancement method for wireless HetNets via transmission pair scheduling[J].Journal of Southeast University(English Edition), 2019, 35(3):318-324.DOI:10.3969/j.issn.1003-7985.2019.03.007.
Last Update: 2019-09-20