[1] Checko A, Christiansen H L, Yan Y, et al. Cloud RAN for mobile networks: A technology overview[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 405-426. DOI:10.1109/comst.2014.2355255.
[2] Peng M G, Sun Y H, Li X L, et al. Recent advances in cloud radio access networks: System architectures, key techniques, and open issues[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2282-2308. DOI:10.1109/comst.2016.2548658.
[3] Tran T X, Hajisami A, Pandey P, et al. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges[J]. IEEE Communications Magazine, 2017, 55(4): 54-61. DOI:10.1109/mcom.2017.1600863.
[4] Guo H Z, Liu J J, Zhang J. Computation offloading for multi-access mobile edge computing in ultra-dense networks[J]. IEEE Communications Magazine, 2018, 56(8): 14-19. DOI:10.1109/mcom.2018.1701069.
[5] Dinh T Q, La Q D, Quek T Q S, et al. Learning for computation offloading in mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(12): 6353-6367. DOI:10.1109/tcomm.2018.2866572.
[6] Wang F, Xu J, Wang X, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems [J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1784-1797. DOI: 10.1109/TWC.2017.2785305.
[7] Zhou J Z, Zhang X, Wang W B. Joint resource allocation and user association for heterogeneous services in multi-access edge computing networks[J]. IEEE Access, 2019, 7: 12272-12282. DOI:10.1109/access.2019.2892466.
[8] Du J B, Zhao L Q, Chu X L, et al. Enabling low-latency applications in LTE-A based mixed fog/cloud computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1757-1771. DOI:10.1109/tvt.2018.2882991.
[9] Chen L X, Zhou S, Xu J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. ACM Transactions on Networking, 2018, 26(4): 1619-1632. DOI:10.1109/tnet.2018.2841758.
[10] Ko S W, Han K F, Huang K B.Wireless networks for mobile edge computing: Spatial modeling and latency analysis[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5225-5240. DOI:10.1109/twc.2018.2840120.
[11] Fan Q, Ansari N. Application aware workload allocation for edge computing-based IoT[J]. IEEE Internet of Things Journal, 2018, 5(3): 2146-2153. DOI:10.1109/jiot.2018.2826006.
[12] Yang L C, Zhang H L, Li M, et al. Mobile edge computing empowered energy efficient task offloading in 5G[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6398-6409. DOI:10.1109/tvt.2018.2799620.
[13] Lyu X C, Ni W, Tian H, et al. Optimal schedule of mobile edge computing for Internet of Things using partial information[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2606-2615. DOI:10.1109/jsac.2017.2760186.
[14] Kim Y, Kwak J, Chong S. Dual-side optimization for cost-delay tradeoff in mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1765-1781. DOI:10.1109/tvt.2017.2762423.
[15] Feng H, Llorca J, Tulino A M, et al. Optimal control of wireless computing networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(12): 8283-8298. DOI:10.1109/twc.2018.2875740.
[16] Kim Y, Lee H W, Chong S. Mobile computation offloading for application throughput fairness and energy efficiency[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 3-19. DOI:10.1109/twc.2018.2868679.
[17] Neely M J. Stochastic network optimization with application to communication and queueing systems[M]//Synthesis Lectures on Communication Networks.Morgan & Claypool, 2010: 1-211. DOI:10.2200/s00271ed1v01y201006cnt007.