[1] Nowack B, Krug H F, Height M. 120 years of nanosilver history: Implications for policy makers[J]. Environmental Science & Technology, 2011, 45(4): 1177-1183. DOI:10.1021/es103316q.
[2] Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602. DOI:10.1016/j.watres.2008.08.015.
[3] Bradford A, Handy R D, Readman J W, et al. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments[J].Environmental Science & Technology, 2009, 43(12): 4530-4536. DOI:10.1021/es9001949.
[4] Oleszczuk P, Josko I, Xing B S. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2011, 186(1): 436-442. DOI:10.1016/j.jhazmat.2010.11.028.
[5] Keller A A, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local[J]. Environmental Science & Technology Letters, 2014, 1(1): 65-70. DOI:10.1021/ez400106t.
[6] Brix H. Do macrophytes play a role in constructed treatment wetlands?[J]. Water Science and Technology, 1997, 35(5): 11-17. DOI:10.2166/wst.1997.0154.
[7] Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2007, 29(2): 173-191. DOI:10.1016/j.ecoleng.2006.06.013.
[8] Wang W X. Comparison of metal uptake rate and absorption efficiency in marine bivalves[J]. Environmental Toxicology and Chemistry, 2001, 20(6): 1367-1373. DOI:10.1002/etc.5620200628.
[9] Ribeiro F, Gallego-Urrea J A, Jurkschat K, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio[J]. Science of the Total Environment, 2014, 466-467: 232-241. DOI:10.1016/j.scitotenv.2013.06.101.
[10] Bao D P, Oh Z G, Chen Z. Characterization of silver nanoparticles internalized by arabidopsis plants using single particle ICP-MS analysis[J]. Frontiers in Plant Science, 2016, 7: 32. DOI:10.3389/fpls.2016.00032.
[11] Sheng Z Y, Liu Y. Potential impacts of silver nanoparticles on bacteria in the aquatic environment[J]. Journal of Environmental Management, 2017, 191: 290-296. DOI:10.1016/j.jenvman.2017.01.028.
[12] Huang Y F, Qiu W W, Yu Z H, et al. Toxic effect of cadmium adsorbed by different sizes of nano-hydroxyapatite on the growth of rice seedlings[J]. Environmental Toxicology and Pharmacology, 2017, 52: 1-7. DOI:10.1016/j.etap.2017.03.005.
[13] Singh D, Kumar A. Effects of nano silver oxide and silver ions on growth of vigna radiata[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(3): 379-384. DOI:10.1007/s00128-015-1595-4.
[14] Judy J D, Kirby J K, Creamer C, et al. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil[J]. Environmental Pollution, 2015, 206: 256-263. DOI:10.1016/j.envpol.2015.07.002.
[15] Nair P M G, Chung I M. Physiological and molecular level effects of silver nanoparticles exposure in rice(Oryza sativa L.)seedlings[J]. Chemosphere, 2014, 112: 105-113. DOI:10.1016/j.chemosphere.2014.03.056.
[16] Yin L Y, Cheng Y W, Espinasse B, et al. More than the ions: The effects of silver nanoparticles onlolium multiflorum[J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. DOI:10.1021/es103995x.
[17] Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology, 2009, 43(24): 9473-9479. DOI:10.1021/es901695c.
[18] El-Temsah Y S, Joner E J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil[J]. Environmental Toxicology, 2012, 27(1): 42-49. DOI:10.1002/tox.20610.
[19] Lombardi L, Sebastiani L. Copper toxicity in Prunus cerasifera: Growth and antioxidant enzymes responses of in vitro grown plants[J]. Plant Science, 2005, 168(3): 797-802. DOI:10.1016/j.plantsci.2004.10.012.
[20] Wu J H, Yang L, Sun G R. Generation of activated oxygen and change of cell defense enzyme activity in leaves of maize seedling under the stress of low temperature[J]. Bulletin of Botanical Research, 2004, 24(4): 456-459. DOI:10.3969/j.issn.1673-5102.2004.04.023. (in Chinese)
[21] Wang R R, Ding S H, Hu X S, et al. Effects of high hydrostatic pressure on chlorophylls and chlorophyll-protein complexes in spinach[J]. European Food Research and Technology, 2016, 242(9): 1533-1543. DOI:10.1007/s00217-016-2654-8.
[22] Baskar V, Venkatesh J, Park S W. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis[J]. Environmental Science and Pollution Research, 2015, 22(22): 17672-17682. DOI:10.1007/s11356-015-4864-1.
[23] Yin L Y, Colman B P, McGill B M, et al. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants[J]. PLoS One, 2012, 7(10): e47674. DOI:10.1371/journal.pone.0047674.
[24] Sheng Z Y, Liu Y. Potential impacts of silver nanoparticles on bacteria in the aquatic environment[J]. Journal of Environmental Management, 2017, 191: 290-296. DOI:10.1016/j.jenvman.2017.01.028.
[25] Wang S G, Dai D W, Song S, et al. Arbuscular mycorrhizal(AM)status in urban wetland plants and its impact factors[J]. Aquatic Botany, 2018, 150: 33-45. DOI:10.1016/j.aquabot.2018.07.002.
[26] Zhou H D, Liu X J, Chen X M, et al. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers[J]. Science of the Total Environment, 2018, 636: 1291-1302. DOI:10.1016/j.scitotenv.2018.04.384.
[27] Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287. DOI:10.1016/0003-2697(71)90370-8.
[28] Cosio C, Dunand C. Transcriptome analysis of various flower and silique development stages indicates a set of class Ⅲ peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana[J]. BMC Genomics, 2010, 11(1): 528-544. DOI:10.1186/1471-2164-11-528.
[29] Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32(1): 93-101. DOI:10.1093/jxb/32.1.93.
[30] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. DOI:10.1016/0003-2697(76)90527-3.
[31] Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15. DOI:10.1104/pp.24.1.1.
[32] Lowry G V, Espinasse B P, Badireddy A R, et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland[J]. Environmental Science & Technology, 2012, 46(13): 7027-7036. DOI:10.1021/es204608d.
[33] Nouri J, Lorestani B, Yousefi N, et al. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine(Hamedan, Iran)[J]. Environmental Earth Sciences, 2011, 62(3): 639-644. DOI:10.1007/s12665-010-0553-z.
[34] Lin C C, Kao C H. Effect of NaCl stress on H2O2 metabolism in rice leaves[J]. Plant Growth Regul, 2000, 30(2):151-155.
[35] Schrader M, Fahimi H D. Peroxisomes and oxidative stress[J].Biochimica et Biophysica Acta(BBA)—Molecular Cell Research, 2006, 1763(12): 1755-1766. DOI:10.1016/j.bbamcr.2006.09.006.
[36] Peng M. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks[J]. Phytopathology, 1992, 82(6): 696-699. DOI:10.1094/phyto-82-696.
[37] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist, 1993, 125(1): 27-58. DOI:10.1111/j.1469-8137.1993.tb03863.x.
[38] Thwala M, Musee N, Sikhwivhilu L, et al. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters[J]. Environmental Science: Processes & Impacts, 2013, 15(10): 1830-1843. DOI:10.1039/c3em00235g.
[39] He J, Ji Z X, Wang Q Z, et al. Effect of Cu and Pb pollution on the growth and antionxidant enzyme activity of Suaeda heteroptera[J]. Ecological Engineering, 2016, 87: 102-109. DOI:10.1016/j.ecoleng.2015.11.004.
[40] Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life[J]. Plant Physiology, 2006, 141(2): 312-322. DOI:10.1104/pp.106.077073.
[41] Du Y Y, Wang P C, Chen J, et al. Comprehensive functional analysis of the catalase gene family inarabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1318-1326. DOI:10.1111/j.1744-7909.2008.00741.x.
[42] UruE7; Parlak K, Demirezen Yilmaz D. Ecophysiological tolerance of Lemna gibba L. exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2013, 91: 79-85. DOI:10.1016/j.ecoenv.2013.01.009.
[43] Balen B, Tkalec M, 160;ikic S, et al. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc[J]. Ecotoxicology, 2011, 20(4): 815-826. DOI:10.1007/s10646-011-0633-1.
[44] Nair P M G, Park S Y, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius[J]. Chemosphere, 2013, 92(5): 592-599. DOI:10.1016/j.chemosphere.2013.03.060.
[45] Ma C X, Chhikara S, Xing B S, et al. Physiological and molecular response of arabidopsis thaliana(L.)to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 768-778. DOI:10.1021/sc400098h.
[46] Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza[J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1880-1886. DOI:10.1002/etc.1899.
[47] Oukarroum A, Polchtchikov S, Perreault F, et al. Temperature influence on silver nanoparticles inhibitory effect on photosystem Ⅱ photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Environmental Science and Pollution Research, 2012, 19(5): 1755-1762. DOI:10.1007/s11356-011-0689-8.
[48] Qian H F, Peng X F, Han X, et al. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J]. Journal of Environmental Sciences, 2013, 25(9): 1947-1956. DOI:10.1016/s1001-0742(12)60301-5.
[49] Ma Y H, Kuang L L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279. DOI:10.1016/j.chemosphere.2009.10.050.
[50] Sharma P, Bhatt D, Zaidi M G H, et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea[J]. Applied Biochemistry and Biotechnology, 2012, 167(8): 2225-2233. DOI:10.1007/s12010-012-9759-8.