[1] Lee W H, Tseng S S, Tsai S H. A knowledge based real-time travel time prediction system for urban network[J]. Expert Systems with Applications, 2009, 36(3): 4239-4247. DOI:10.1016/j.eswa.2008.03.018.
[2] Miranda D M, ConceiE7;E3;o S V. The vehicle routing problem with hard time windows and stochastic travel and service time[J]. Expert Systems with Applications, 2016, 64: 104-116. DOI:10.1016/j.eswa.2016.07.022.
[3] Oh S, Byon Y J, Jang K, et al. Short-term travel-time prediction on highway: A review on model-based approach[J]. KSCE Journal of Civil Engineering, 2018, 22(1): 298-310. DOI:10.1007/s12205-017-0535-8.
[4] Farokhi Sadabadi K, Hamedi M, Haghani A. Evaluating moving average techniques in short-term travel time prediction using an AVI data set[C]//Transportation Research Board 89th Annual Meeting. Washington, DC, USA, 2010.
[5] Julio N, Giesen R, Lizana P. Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms[J]. Research in Transportation Economics, 2016, 59: 250-257. DOI:10.1016/j.retrec.2016.07.019.
[6] Liu W M, Li S S. Freeway travel time prediction simulation research based on big data[J]. Computer Simulation, 2017, 34(3): 395-399.(in Chinese)
[7] Cai H R, He L L. A combined offline travel time prediction model based on speed matrix and artificial neural network[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017(6): 851-858.(in Chinese)
[8] Yu B, Yang Z Z, Yao B Z. Bus arrival time prediction using support vector machines[J]. Journal of Intelligent Transportation Systems, 2006, 10(4): 151-158. DOI:10.1080/15472450600981009.
[9] Reddy K K, Anil Kumar B, Vanajakshi L. Bus travel time prediction under high variability conditions[J]. Current Science, 2016, 111(4): 700. DOI:10.18520/cs/v111/i4/700-711.
[10] Sun X Y, Zhang H, Tian F L, et al. The use of a machine learning method to predict the real-time link travel time of open-pit trucks[J]. Mathematical Problems in Engineering, 2018, 2018: 1-14. DOI:10.1155/2018/4368045.
[11] Kumar B A, Vanajakshi L, Subramanian S C. Bus travel time prediction using a time-space discretization approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 308-332. DOI:10.1016/j.trc.2017.04.002.
[12] Zhao J D, Guo Y J, Duan X H. Dynamic path planning of emergency vehicles based on travel time prediction[J]. Journal of Advanced Transportation, 2017, 2017: 1-14. DOI:10.1155/2017/9184891.
[13] Gal A, Mandelbaum A, Schnitzler F, et al. Traveling time prediction in scheduled transportation with journey segments[J]. Information Systems, 2017, 64: 266-280. DOI:10.1016/j.is.2015.12.001.
[14] Zhao J D, Gao Y, Tang J J, et al. Highway travel time prediction using sparse tensor completion tactics and K-nearest neighbor pattern matching method[J]. Journal of Advanced Transportation, 2018, 2018: 1-16. DOI:10.1155/2018/5721058.
[15] Ahmed M M, Abdel-Aty M. Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2386: 26-34. DOI:10.3141/2386-04.
[16] Friedman J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378. DOI:10.1016/s0167-9473(01)00065-2.
[17] Friedman J H, Meulman J J. Multiple additive regression trees with application in epidemiology[J]. Statistics in Medicine, 2003, 22(9): 1365-1381. DOI:10.1002/sim.1501.
[18] National Research Council. HCM2010: Highway capacity manual [M]. 5th ed. Washington, DC, USA: Transportation Research Board, 2010.
[19] Zhang Y R, Haghani A. A gradient boosting method to improve travel time prediction[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 308-324. DOI:10.1016/j.trc.2015.02.019.