|Table of Contents|

[1] Nguyen Van Liem, Zhang Jianrun, Wu Zhenpeng, et al. Performance analysis of semi-active cab’s hydraulic systemof the vibratory roller using optimal fuzzy-PID control [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 399-407. [doi:10.3969/j.issn.1003-7985.2019.04.001]
Copy

Performance analysis of semi-active cab’s hydraulic systemof the vibratory roller using optimal fuzzy-PID control()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
399-407
Research Field:
Traffic and Transportation Engineering
Publishing date:
2019-12-30

Info

Title:
Performance analysis of semi-active cab’s hydraulic systemof the vibratory roller using optimal fuzzy-PID control
Author(s):
Nguyen Van Liem1 2 Zhang Jianrun1 Wu Zhenpeng2 Yang Xiuzhi2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
Keywords:
vibratory roller off-road terrains semi-active cab’s hydraulic system optimal fuzzy-PID(proportional integral derivative)control
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2019.04.001
Abstract:
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control, a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software. The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions. The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions. The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle, especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling. With SHM using the optimal fuzzy-PID control, the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle, particularly at the speed from 6 to 7 km/h of the vehicle traveling.

References:

[1] Adam D, Kopf F. Theoretical analysis of dynamically loaded soils[C]//Proceedings of European Workshop Compaction of Soils and Granular Materials. Paris, France, 2000: 207-220.
[2] Kordestani A, Rakheja S, Marcotte PhD P, et al. Analysis of ride vibration environment of soil compactors[J]. SAE International Journal of Commercial Vehicles, 2010, 3(1): 259-272. DOI:10.4271/2010-01-2022.
[3] Nguyen V L, Zhang J R, Hua W L, et al. Ride quality evaluation of the soil compactor cab supplemented by auxiliary hydraulic mounts via simulation and experiment [J]. Journal of Southeast University(English Edition), 2019, 35(3): 273-280. DOI:10.3969/j.issn.1003-7985.2019.03.001.
[4] Bekker M. Introduction to terrain-vehicle systems[M]. Ann Arbor, USA: University of Michigan Press, 1969.
[5] Wong J Y. Data processing methodology in the characterization of the mechanical properties of terrain[J]. Journal of Terramechanics, 1980, 17(1): 13-41. DOI:10.1016/0022-4898(80)90014-2.
[6] Mitschke M. Dynamik der kraftfahrzeuge[M]. Berlin, Germany: Springer-Verlag, 1972. DOI:10.1007/978-3-662-11585-5.
[7] Nguyen V L, Zhang J R, Jiao R Q, et al. Effect of the road-off terrains on the ride comfort of construction vehicles [J]. Journal of Southeast University(English Edition), 2019, 35(2): 191-197. DOI:10.3969/j.issn.1003-7985.2019.02.008.
[8] Nguyen V L, Zhang J R, Le V Q, et al. Vibration analysis and modeling of an off-road vibratory roller equipped with three different cab’s isolation mounts [J]. Shock and Vibration, 2018, 2018: 1-17. DOI:10.1155/2018/8527574.
[9] Yildirim 瘙塁. Vibration control of suspension systems using a proposed neural network [J]. Journal of Sound and Vibration, 2004, 277(4/5): 1059-1069. DOI:10.1016/j.jsv.2003.09.057.
[10] Kasemi B, Muthalif A G A, Rashid M M, et al. Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper[J]. Procedia Engineering, 2012, 41: 1221-1227. DOI:10.1016/j.proeng.2012.07.304.
[11] Nguyen S D, Nguyen Q H, Choi S B. A hybrid clustering based fuzzy structure for vibration control—Part 2: An application to semi-active vehicle seat-suspension system[J]. Mechanical Systems and Signal Processing, 2015, 56/57: 288-301. DOI:10.1016/j.ymssp.2014.10.019.
[12] Wang W, Song Y L, Xue Y B, et al. An optimal vibration control strategy for a vehicle’s active suspension based on improved cultural algorithm[J]. Applied Soft Computing, 2015, 28: 167-174. DOI:10.1016/j.asoc.2014.11.047.
[13] Chen Y, Wang Z L, Qiu J, et al. Hybrid fuzzy skyhook surface control using multi-objective microgenetic algorithm for semi-active vehicle suspension system ride comfort stability analysis [J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(4): 1-14. DOI: 10. 1115/1.4006220.
[14] International Organization for Standardization. ISO/TC108/SC2/WG4 N57 Reporting vehicle road surface irregularities [S]. Stuttgart, Germany: Thieme Medical Publishers, 1982.
[15] Mamdani E H. Advances in the linguistic synthesis of fuzzy controllers[J]. International Journal of Man-Machine Studies, 1976, 8(6): 669-678. DOI:10.1016/s0020-7373(76)80028-4.
[16] Nguyen V L, Zhang J R, Le V Q, et al. Performance analysis of air suspension system of heavy truck with semi-active fuzzy control [J]. Journal of Southeast University(English Edition), 2017, 33(2): 159-165. DOI:10.3969/j.issn.1003-7985.2017.02.006.
[17] Nariman-Zadeh N, Salehpour M, Jamali A, et al. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm(MUGA)[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 543-551. DOI:10.1016/j.engappai.2009.08.008.
[18] Crews J H, Mattson M G, Buckner G D. Multi-objective control optimization for semi-active vehicle suspensions[J]. Journal of Sound and Vibration, 2011, 330(23): 5502-5516. DOI:10.1016/j.jsv.2011.05.036.
[19] International Organization for Standardization. ISO 2631-1 Mechanical vibration and shock-evaluation of human exposure to whole body vibration—Part 1: General requirements [S]. Geneve, Switzerland: International Organization for Standardization, 1997.

Memo

Memo:
Biographies: Nguyen Van Liem(1986—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation item: The National Key Research and Development Plan(No. 2019YFB2006402).
Citation: Nguyen Van Liem, Zhang Jianrun, Wu Zhenpeng, et al. Performance analysis of semi-active cab’s hydraulic system of the vibratory roller using optimal fuzzy-PID control[J].Journal of Southeast University(English Edition), 2019, 35(4):399-407.DOI:10.3969/j.issn.1003-7985.2019.04.001.
Last Update: 2019-12-20