[1] Li H, Xiao D Y. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9, 16. DOI:10.13195/j.cd.2011.01.3.lih.016. (in Chinese)
[2] Ren H, Qu J F, Chai Y. Research status and challenges of deep learning in fault diagnosis[J]. Control and Decision, 2017, 32(8):1345-1358.(in Chinese)
[3] Hinton G E. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. DOI:10.1126/science.1127647.
[4] Lei Y G, Jia F, Zhou X. Mechanical equipment big data health monitoring method based on deep learning theory[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56.(in Chinese)
[5] She D M, Jia M P. Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate[J]. Measurement, 2019, 135: 368-375. DOI:10.1016/j.measurement.2018.11.040.
[6] Zhao R, Yan R Q, Chen Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237. DOI:10.1016/j.ymssp.2018.05.050.
[7] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI:10.1109/5.726791.
[8] Liu X C, Zhou Q C, Zhao J, et al. Real-time anti-noise fault diagnosis algorithm for one-dimensional convolutional neural networks[J]. Journal of Harbin Institute of Technology, 2019, 51(7):89-95.(in Chinese)
[9] Zhang W, Peng G L, Li C H. Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration signals as input[J]. MATEC Web of Conferences, 2017, 95: 13001. DOI:10.1051/matecconf/20179513001.
[10] Masci J, Meier U, Cire瘙塂an D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 52-59. DOI:10.1007/978-3-642-21735-7_7.
[11] Li F F, Qiao H, Zhang B. Discriminatively boosted image clustering with fully convolutional auto-encoders[J]. Pattern Recognition, 2018, 83: 161-173. DOI:10.1016/j.patcog.2018.05.019.
[12] Liu X C, Zhou Q C, Zhao J, et al. Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network[J]. Sensors, 2019, 19(4): 972-993. DOI:10.3390/s19040972.
[13] Zhang X N, Xiang Z, Tang C H. A deep convolutional autoencoder and its application in fault diagnosis of rolling bearings[J]. Journal of Xi’an Jiaotong University, 2018, 52(7):6-13, 64.(in Chinese)
[14] Kingma D P, Ba J. Adam: A method for stochastic optimization[J/OL].Computer Science, 2014. https://arxiv.org/pdf/1412.6980v8.pdf.
[15] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. DOI:10.1038/323533a0.
[16] Lei Y G, Jia F, Lin J, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147. DOI:10.1109/tie.2016.2519325.