[1] Nielson B G, DesRoches R. Seismic fragility methodology for highway bridges using a component level approach[J].Earthquake Engineering & Structural Dynamics, 2007, 36(6): 823-839. DOI:10.1002/eqe.655.
[2]Ramanathan K N. Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design[D]. Atlanta, USA: Georgia Institute of Technology, 2012.
[3] Zhang J, Huo Y L. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J].Engineering Structures, 2009, 31(8): 1648-1660. DOI:10.1016/j.engstruct.2009.02.017.
[4] Padgett J E, DesRoches R. Methodology for the development of analytical fragility curves for retrofitted bridges[J].Earthquake Engineering & Structural Dynamics, 2008, 37(8): 1157-1174. DOI:10.1002/eqe.801.
[5] Zhong J, Pang Y T, Jeon J S, et al. Seismic fragility assessment of long-span cable-stayed bridges in China[J].Advances in Structural Engineering, 2016, 19(11): 1797-1812. DOI:10.1177/1369433216649380.
[6] Sgambi L, Garavaglia E, Basso N, et al. Monte Carlo simulation for seismic analysis of a long span suspension bridge[J].Engineering Structures, 2014, 78: 100-111. DOI:10.1016/j.engstruct.2014.08.051.
[7] Nie L Y, Li J Z, Hu S D, et al. Comparison of three kinds of girder end constraint systems for Xihoumen bridge[J]. Bridge Construction, 2006, 36(6): 73-75, 78.(in Chinese)
[8] Arzoumanidis S, Shama A, Ostadan F. Performance-based seismic analysis and design of suspension bridges[J].Earthquake Engineering & Structural Dynamics, 2005, 34(4/5): 349-367. DOI:10.1002/eqe.441.
[9] Karmakar D, Ray-Chaudhuri S, Shinozuka M. Finite element model development, validation and probabilistic seismic performance evaluation of Vincent Thomas suspension bridge[J].Structure and Infrastructure Engineering, 2015, 11(2): 223-237. DOI:10.1080/15732479.2013.863360.
[10] Ministry of Transport of the People’s Republic of China. JTG/T B02-1—2008 Guidelines for seismic design of highway bridges[S]. Beijing: China Communication Publishing, 2008.(in Chinese)
[11] Chen W F, Duan L. Bridge engineering handbook[M]. Boca Raton, USA: CRC Press, 2014: 382-384.
[12] McKenna F, Scott M H, Fenves G L. Nonlinear finite-element analysis software architecture using object composition[J].Journal of Computing in Civil Engineering, 2010, 24(1): 95-107. DOI:10.1061/(asce)cp.1943-5487.0000002.
[13] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering, 1988, 114(8): 1804-1826. DOI:10.1061/(asce)0733-9445(1988)114:8(1804).
[14] Nazmy A S, Abdel-Ghaffar A M. Non-linear earthquake-response analysis of long-span cable-stayed bridges: Theory[J]. Earthquake Engineering & Structural Dynamics. 1990, 19(1), 45-62. DOI:10.1002/eqe.4290190106.
[15] Wang K H, Lu G Y, Zhang P P. Study on seismic design evaluation methods for highway medium-span and small-span girder bridges based on machine learning [J]. Journal of Highway and Transportation Research and Development, 2019, 36(2): 74-84.(in Chinese)
[16] Shamsabadi A, Rollins K M, Kapuskar M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720. DOI:10.1061/(asce)1090-0241(2007)133:6(707).
[17] California Department of Transportation. Caltrans seismic design criteria [S]. Sacramento, CA, USA: California Department of Transportation, 1999.
[18] Muthukumar S, Desroches R. Evaluation of impact models for seismic pounding[C]// 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada, 2004: No. 235.
[19] Li X L, Sun Z G, Wang D S, et al. Longitudinal seismic pounding effect of bridges abutment and backfilling damage[J]. Journal of Chang’an University(Natural Science Edition), 2015, 35(4): 76-82.(in Chinese)
[20] Madani B, Behnamfar F, Tajmir Riahi H. Dynamic response of structures subjected to pounding and structure-soil-structure interaction[J].Soil Dynamics and Earthquake Engineering, 2015, 78: 46-60. DOI:10.1016/j.soildyn.2015.07.002.
[21] Wu G, Wang K H, Lu G Y, et al. An experimental investigation of unbonded laminated elastomeric bearings and the seismic evaluations of highway bridges with tested bearing components[J].Shock and Vibration, 2018, 2018: 1-18. DOI:10.1155/2018/8439321.
[22] Xu L Q, Li J Z. Design and experimental investigation of a new type sliding retainer and its efficacy in seismic fortification[J]. Engineering Mechanics. 2016, 33(2): 111-118.(in Chinese)
[23] Krawinkler H, Medina R, Alavi B. Seismic drift and ductility demands and their dependence on ground motions[J].Engineering Structures, 2003, 25(5): 637-653. DOI:10.1016/s0141-0296(02)00174-8.
[24] Gupta A, Krawinkler H. Behavior of ductile SMRFs at various seismic hazard levels[J].Journal of Structural Engineering, 2000, 126(1): 98-107. DOI:10.1061/(asce)0733-9445(2000)126:1(98).
[25] Opricovic S, Tzeng G H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS[J].European Journal of Operational Research, 2004, 156(2): 445-455. DOI:10.1016/s0377-2217(03)00020-1.
[26] Cornell C A. Calculating building seismic performance reliability: A basis for multi-level design norms[C]// Proceedings of the 11th World Conference on Earthquake Engineering. Acapulco, Mexico, 1996: No. 2122.
[27] Xie Y Z, Zhang J. Optimal design of seismic protective devices for highway bridges using performance-based methodology and multiobjective genetic optimization[J].Journal of Bridge Engineering, 2017, 22(3): 04016129. DOI:10.1061/(asce)be.1943-5592.0001009.
[28] Federal Emergency Management Agency. Multi-hazard loss estimation methodology, earthquake model, HAZUS MH MR4—technical manual [M]. Washington, DC, USA: FEMA Mitigation Div., 2003.