|Table of Contents|

[1] Ding Hongqin, Jiang Shuyun,. Analysis on cavitation erosion resistance of isostatic graphite [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 123-127. [doi:10.3969/j.issn.1003-7985.2020.02.001]
Copy

Analysis on cavitation erosion resistance of isostatic graphite()
等静压石墨抗空蚀性能分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
123-127
Research Field:
Mechanical Engineering
Publishing date:
2020-06-20

Info

Title:
Analysis on cavitation erosion resistance of isostatic graphite
等静压石墨抗空蚀性能分析
Author(s):
Ding Hongqin, Jiang Shuyun
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
丁红钦, 蒋书运
东南大学机械工程学院, 南京 211189
Keywords:
isostatic graphite cavitation erosion erosive wear porosity
等静压石墨 空蚀 冲蚀磨损 孔隙
PACS:
TH117
DOI:
10.3969/j.issn.1003-7985.2020.02.001
Abstract:
Isostatic graphite materials with 8% porosity and 14% porosity were prepared by the cold isostatic pressing process. Cavitation erosion resistance of the isostatic graphite was evaluated through cavitation tests in an ultrasonic vibration system. The volume loss and erosion morphology of the isostatic graphite were adopted to investigate the cavitation erosion resistance of the isostatic graphite. The cavitation test results show that after ultrasonic vibration of 14 h, the volume loss of the isostatic graphite materials with 8% porosity and 14% porosity are 35% and 46% of the carbon graphite material, respectively. The isostatic graphite material with 8% porosity exhibits an outstanding capability to resist cavitation erosion damage, and the cavitation erosion resistance of the isostatic graphite enhances with the decrease in porosity. The damage mechanism of isostatic graphite is brittle fracture attributed to the shock wave and micro jet. The isostatic graphite with low porosity exhibits excellent cavitation erosion resistance due to its fine graphite particles, homogeneous structure and high degree of hardness.
通过冷等静压工艺制备了孔隙率为8%和14%的等静压石墨, 通过超声振动空蚀试验系统对等静压石墨的抗空蚀性能进行了研究, 采用等静压石墨的体积损失和表面破坏形貌揭示其抗空蚀性能.空蚀试验结果表明:超声振动14 h后, 与普通碳石墨相比, 孔隙率为8%和14%的等静压石墨体积损失分别为普通碳石墨的35%和46%;孔隙率为8%的等静压石墨表现出更强的抗空蚀能力, 且等静压石墨的抗空蚀能力随着孔隙率的降低而增加;等静压石墨空蚀破坏的机制是冲击波和微射流作用下等静压石墨材料的脆性断裂;由于粒度小、组织均匀及硬度高, 低孔隙率的等静压石墨表现出良好抗空蚀性能.

References:

[1] Mitelea I, Ghera C, Bordeaşu I, et al. Assessment of cavitation erosion of gas-nitrided Cr-Ni-Mo steels[J]. Journal of Tribology, 2018, 140(6): 061601-1-061601-8. DOI:10.1115/1.4039133.
[2] Abouel-Kasem A, Ahmed S M. Bubble structures between two walls in ultrasonic cavitation erosion[J]. Journal of Tribology, 2012, 134(2): 021702-1-021702-9. DOI:10.1115/1.4005217.
[3] Abouel-Kasem A, El-Deen A E, Emara K M, et al. Investigation into cavitation erosion pits[J]. Journal of Tribology, 2009, 131(3): 031605-1-031605-7. DOI:10.1115/1.3075863.
[4] Zhang L, Zhang Y K, Lu J Z, et al. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion[J]. Corrosion Science, 2013, 66: 5-13. DOI:10.1016/j.corsci.2012.08.034.
[5] Abouel-Kasem A, Ahmed S M. Cavitation erosion mechanism based on analysis of erosion particles[J].Journal of Tribology, 2008, 130(3): 031601-1-031601-6. DOI:10.1115/1.2913552.
[6] Jiang S Y, Ding H Q, Xu J. Cavitation erosion resistance of sputter-deposited Cr3Si film on stainless steel[J].Journal of Tribology, 2017, 139(1): 014501-1-014501-5. DOI:10.1115/1.4033049.
[7] Ding H Q, Jiang S Y. Cavitation erosion resistance of silicified graphite by liquid silicon penetration technique[J]. Journal of Tribology, 2017, 139(6): 064501-1-064501-5. DOI:10.1115/1.4035869.
[8] Jia Q, Yuan X Y, Zhang G Y, et al. Dry friction and wear characteristics of impregnated graphite in a corrosive environment[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 965-971. DOI:10.3901/cjme.2014.0616.111.
[9] Jones G. On the tribological behaviour of mechanical seal face materials in dry line contact[J]. Wear, 2004, 256(3/4): 415-432. DOI:10.1016/s0043-1648(03)00539-8.
[10] Batchelor A W, Lam L N, Chandrasekaran M. Lubrication of stellite at ambient and elevated temperatures by transfer films from a graphite slider[J].Wear, 1996, 198(1/2): 208-215. DOI:10.1016/0043-1648(96)06967-0.
[11] Williams J A, Morris J H, Ball A. The effect of transfer layers on the surface contact and wear of carbon-graphite materials[J].Tribology International, 1997, 30(9): 663-676. DOI:10.1016/s0301-679x(97)00034-0.
[12] Cui G J, Bi Q L, Yang J, et al. Effect of normal loads on tribological properties of bronze-graphite composite under seawater condition[J]. Tribology Transactions, 2014, 57(2): 308-316. DOI:10.1080/10402004.2013.877177.
[13] Zhu Z G, Bai S, Wu J F, et al. Friction and wear behavior of resin/graphite composite under dry sliding[J]. Journal of Materials Science & Technology, 2015, 31(3): 325-330. DOI:10.1016/j.jmst.2014.10.004.
[14] Zhang G L, Liu Y, Guo F, et al. Friction characteristics of impregnated and non-impregnated graphite against cemented carbide under water lubrication[J]. Journal of Materials Science & Technology, 2017, 33(10): 1203-1209. DOI:10.1016/j.jmst.2016.06.013.
[15] Kovácˇik J, Emmer Š, Bielek J, et al. Effect of composition on friction coefficient of Cu-graphite composites[J]. Wear, 2008, 265(3/4): 417-421. DOI:10.1016/j.wear.2007.11.012.
[16] Liu Y B, Lim S C, Ray S, et al. Friction and wear of aluminium-graphite composites: The smearing process of graphite during sliding[J].Wear, 1992, 159(2): 201-205. DOI:10.1016/0043-1648(92)90303-p.
[17] Rajkumar K, Aravindan S. Microwave sintering of copper-graphite composites[J].Journal of Materials Processing Technology, 2009, 209(15/16):5601-5605. DOI:10.1016/j.jmatprotec.2009.05.017.
[18] Rajkumar K, Kundu K, Aravindan S, et al. Accelerated wear testing for evaluating the life characteristics of copper-graphite tribological composite[J]. Materials & Design, 2011, 32(5): 3029-3035. DOI:10.1016/j.matdes.2011.01.046.
[19] Ma W L, Lu J J. Effect of sliding speed on surface modification and tribological behavior of copper-graphite composite[J]. Tribology Letters, 2011, 41(2): 363-370. DOI:10.1007/s11249-010-9718-x.
[20] Gulevskii V A, Antipov V I, Kolmakov A G, et al. Designing of copper-based alloys for the impregnation of carbon-graphite materials[J]. Russian Metallurgy(Metally), 2012, 2012(3): 258-261. DOI:10.1134/s0036029512030081.
[21] Hirani H, Goilkar S S. Formation of transfer layer and its effect on friction and wear of carbon-graphite face seal under dry, water and steam environments[J].Wear, 2009, 266(11/12): 1141-1154. DOI:10.1016/j.wear.2009.03.018.
[22] Serre I, Celati N, Pradeilles-Duval R. Tribological and corrosion wear of graphite ring against Ti6Al4V disk in artificial sea water[J]. Wear, 2002, 252(9/10): 711-718. DOI:10.1016/s0043-1648(02)00030-3.
[23] Cui G J, Bi Q L, Zhu S Y, et al. Tribological properties of bronze-graphite composites under sea water condition[J]. Tribology International, 2012, 53: 76-86. DOI:10.1016/j.triboint.2012.04.023.
[24] Salavati H, Alizadeh Y, Ayatollahi M R. Fracture assessment of inclined double keyhole notches in isostatic graphite[J]. Physical Mesomechanics, 2018, 21(2): 110-116. DOI:10.1134/s1029959918020030.
[25] Torabi A R. Sudden fracture from U-notches in fine-grained isostatic graphite under mixed mode Ⅰ/Ⅱ loading[J].International Journal of Fracture, 2013, 181(2): 309-316. DOI:10.1007/s10704-013-9832-5.
[26] Berto F, Lazzarin P, Ayatollahi M R. Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading[J].Carbon, 2012, 50(5): 1942-1952. DOI:10.1016/j.carbon.2011.12.045.
[27] Berto F, LazzarinP, Ayatollahi M R. Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading[J]. Carbon, 2013, 63: 101-116. DOI:10.1016/j.carbon.2013.06.045.
[28] Lazzarin P, Berto F, Ayatollahi M R. Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(9): 942-955. DOI:10.1111/ffe.12057.
[29] Berto F, Lazzarin P, Marangon C. Brittle fracture of U-notched graphite plates under mixed mode loading[J]. Materials & Design, 2012, 41: 421-432. DOI:10.1016/j.matdes.2012.05.022.
[30] ASTM G32-16. Standard test method for cavitation erosion using vibratory apparatus [S]. West Conshohocken, PA, USA: ASTM International, 2016.

Memo

Memo:
Biographies: Ding Hongqin(1986—), male, doctor; Jiang Shuyun(corresponding author), male, doctor, professor, jiangshy@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51635004, 11472078).
Citation: Ding Hongqin, Jiang Shuyun. Analysis on cavitation erosion resistance of isostatic graphite[J].Journal of Southeast University(English Edition), 2020, 36(2):123-127.DOI:10.3969/j.issn.1003-7985.2020.02.001.
Last Update: 2020-06-20