|Table of Contents|

[1] Zhuang Huixuan, Sun Qinglin, Chen Zengqiang,. Equivalent sliding mode fault tolerant controlbased on hyperbolic tangent function for vertical tail damage [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 152-162. [doi:10.3969/j.issn.1003-7985.2020.02.005]
Copy

Equivalent sliding mode fault tolerant controlbased on hyperbolic tangent function for vertical tail damage()
垂直尾翼损伤的基于双曲正切函数的等效滑模容错控制
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
152-162
Research Field:
Other Disciplines
Publishing date:
2020-06-20

Info

Title:
Equivalent sliding mode fault tolerant controlbased on hyperbolic tangent function for vertical tail damage
垂直尾翼损伤的基于双曲正切函数的等效滑模容错控制
Author(s):
Zhuang Huixuan Sun Qinglin Chen Zengqiang
College of Artificial Intelligence, Nankai University, Tianjin 300350, China
Key Laboratory of Intelligent Robots, Nankai University, Tianjin 300350, China
庄会选 孙青林 陈增强
南开大学人工智能学院, 天津 300350; 南开大学智能机器人研究所, 天津300350
Keywords:
adaptive sliding mode equivalent sliding mode fault tolerant control damaged aircraft damage degree
自适应滑模 等效滑模 容错控制 受损飞机 损伤程度
PACS:
V249
DOI:
10.3969/j.issn.1003-7985.2020.02.005
Abstract:
An equivalent sliding mode fault-tolerant control method with continuous switching is proposed for vertical tail damage. First, the nonlinear damage model of aircraft and the estimation of stability and control derivatives are introduced. Secondly, the linear sliding surface and the equivalent sliding mode controller are constructed, and the sufficient conditions for the stability of the damaged aircraft motion model are given by using the Lyapunov technique. The damage-tolerant controller is designed based on an adaptive sliding mode control for analyzing damaged aircraft systems. Furthermore, the hyperbolic tangent function is utilized to replace the symbolic function in the controller. The feasibility of the hyperbolic tangent function as the switching function is analyzed theoretically. Finally, the Boeing-747 100/200 model is taken as an example to demonstrate the efficiency of theoretical results by recognizing the structural fault of aircraft. Numerical results show that the control law has a positive impact on the performance of the closed-loop system, and it also has a better fault tolerance and robustness towards external disturbance compared with traditional methods of damaged aircraft stabilization control.
对于垂直尾翼损伤问题, 提出了一种连续切换的等效滑模容错控制方法.首先, 介绍了飞机非线性损伤模型和稳定性与控制导数估计.其次, 构造了线性滑动面和等效滑模控制器, 并利用李亚普诺夫技术, 给出了保证损伤飞机运动模型具有损伤程度稳定性的充分条件.然后, 设计了基于自适应滑模控制的飞机系统损伤容限控制器.利用双曲正切函数代替控制器中的符号函数, 并从理论上分析了双曲正切函数作为切换函数的可行性.最后, 以波音747 100/200模型为例, 通过对飞机结构故障的识别, 验证了理论结果的有效性.数值结果表明, 与传统的损伤稳定控制方法相比, 控制律对闭环系统的性能有积极的影响, 同时具有更好的容错能力和对外界干扰的鲁棒性.

References:

[1] Hu Q L, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness [J]. Nonlinear Dynamics, 2011, 64(1/2): 13-23. DOI:10.1007/s11071-010-9842-z.
[2] Yu X, Jiang J. Fault-tolerant flight control system design against control surface impairments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1031-1051. DOI:10.1109/taes.2012.6178047.
[3] Li H, Wu L, Si Y, et al. Multi-objective fault-tolerant output tracking control of a flexible air-breathing hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2010, 224(6): 647-667. DOI:10.1243/09596518jsce1002.
[4] Shen Q, Jiang B, Cocquempot V. Fault diagnosis and estimation for near-space hypersonic vehicle with sensor faults[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2012, 226(3): 302-313. DOI:10.1177/0959651811421227.
[5] Zhao J, Jiang B, Shi P, et al. Fault-tolerant control design for near-space vehicles based on a dynamic terminal sliding mode technique[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2012, 226(6): 787-794. DOI:10.1177/0959651812437624.
[6] Crider L. Control of commercial aircraft with vertical tail loss[C]//AIAA 4th Aviation Technology, Integration and Operations(ATIO)Forum. Chicago, IL, USA, 2004. DOI:10.2514/6.2004-6293.
[7] Bramesfeld G, Maughmer M D, Willits S M. Piloting strategies for controlling a transport aircraft after vertical-tail loss[J]. Journal of Aircraft, 2006, 43(1): 216-225. DOI:10.2514/1.13357.
[8] Hitachi Y. Damage-tolerant control system design for propulsion-controlled aircraft [D]. Toronto, Canada: University of Toronto, 2009.
[9] Hitachi Y, Liu H.H-infinity-LTR technique applied to robust control of propulsion-controlled aircraft[C]//AIAA Guidance, Navigation, and Control Conference. Chicago, IL, USA, 2009. DOI:10.2514/6.2009-6176.
[10] Li X B, Liu H H T. A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(3): 031006. DOI:10.1115/1.4005512.
[11] Verhaegen M, Kanev S, Hallouzi R, et al. Fault tolerant flight control—A survey [M]. Berlin, Germany: Springer-Verlag, 2010. DOI:10.1007/978-3-642-11690-2-2.
[12] Yu X, Li P, Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4135-4144. DOI:10.1109/tie.2017.2772192.
[13] Hallouzi R, Verhaegen M. Fault-tolerant subspace predictive control applied to a Boeing 747 model[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 873-883. DOI:10.2514/1.33256.
[14] Hajiyev C, Caliskan F. Fault diagnosis and reconfiguration in flight control systems [M]. Boston, MA, USA: Springer-Verlag, 2003. DOI:10.1007/ 978-1-4419-9166-9.
[15] Isermann R. Fault-diagnosis systems: An introduction from fault detection to fault tolerance [M]. Berlin, Germany: Springer-Verlag, 2006. DOI: 10.1007/3-540-30368-5.
[16] Gao Z F, Jiang B, Shi P, et al. Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique[J]. Journal of the Franklin Institute, 2012, 349(4): 1543-1560. DOI:10.1016/j.jfranklin.2011.11.003.
[17] Hu Q L. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits[J]. Nonlinear Dynamics, 2009, 55(4): 301-321. DOI:10.1007/s11071-008-9363-1.
[18] Li P, Yu X, Zhang Y M, et al. Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties[J]. ASME Transactions on Mechatronics, 2017, 22(6): 2723-2735. DOI:10.1109/tmech.2017.2756345.
[19] Yang H J, Xia Y Q, Fu M Y, et al. Robust adaptive sliding mode control for uncertain delta operator systems[J]. International Journal of Adaptive Control and Signal Processing, 2009, 24(8): 623-632. DOI:10.1002/acs.1154.
[20] Zhang J H, Shi P, Xia Y Q. Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(4): 700-711. DOI:10.1109/tfuzz.2010.2047506.
[21] Gao J, Shen Q, Yang P, et al. Sliding mode fault tolerant control with prescribed performance[J]. International Journal of Innovative Computing, Information and Control, 2017, 13(2): 687-694.
[22] Etkin B, Reid L D. Dynamics of flight: Stability and control [M]. New York, USA: John Wiley and Sons, Inc., 1996.
[23] Roskam J. Methods for estimating stability and control derivatives of conventional subsonic airplanes[P]. Lawrence, Kansas, USA: The University of Kansas, 1971.
[24] Utkin V I. Sliding modes in control and optimization [M]. Berlin, Germany: Springer-Verlag, 1992. DOI:10.1007/ 978-3-642-84379-2.
[25] Aghababa M P, Akbari M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9): 5757-5768. DOI:10.1016/j.amc.2011.11.080.
[26] Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427. DOI:10.1016/0005-1098(95)00147-6.
[27] Ioannou P A, Sun J. Robust adaptive control [M]. New Jersey, NJ, USA: Prentice-Hall, 1996. DOI:10.1007/978-1-4471-5102-9-118-1.

Memo

Memo:
Biographies: Zhuang Huixuan(1988—), male, Ph.D. candidate; Sun Qinglin(corresponding author), male, doctor, professor, sunql@nankai.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61973172, 61973175), the Key Technologies R& D Program of Tianjin(No.19JCZDJC32800).
Citation: Zhuang Huixuan, Sun Qinglin, Chen Zengqiang. Equivalent sliding mode fault tolerant control based on hyperbolic tangent function for vertical tail damage[J].Journal of Southeast University(English Edition), 2020, 36(2):152-162.DOI:10.3969/j.issn.1003-7985.2020.02.005.
Last Update: 2020-06-20