[1] Zhang J Y, Song X M, Wang G Q, et al. Development and challenges of urban hydrology in a changing environment: Ⅰ: Hydrological response to urbanization[J]. Advances in Water Science, 2014, 25(4): 594-605. DOI:10.14042/j.cnki.32.1309.2014.04.020. (in Chinese)
[2] Vojinovic Z, Tutulic D. On the use of 1D and coupled 1D-2D modelling approaches for assessment of flood damage in urban areas[J]. Urban Water Journal, 2009, 6(3): 183-199. DOI:10.1080/15730620802566877.
[3] Fraga I, Cea L, Puertas J. Validation of a 1D-2D dual drainage model under unsteady part-full and surcharged sewer conditions[J]. Urban Water Journal, 2017, 14(1): 74-84. DOI:10.1080/1573062x.2015.1057180.
[4] Pan A J, Hou A Z, Tian F Q, et al. Hydrologically enhanced distributed urban drainage model and its application in Beijing City[J]. Journal of Hydrologic Engineering, 2012, 17(6): 667-678. DOI:10.1061/(asce)he.1943-5584.0000491.
[5] Jang J H, Chang T H, Chen W B. Effect of inlet modelling on surface drainage in coupled urban flood simulation[J].Journal of Hydrology, 2018, 562: 168-180. DOI:10.1016/j.jhydrol.2018.05.010.
[6] Chen A S, Leandro J, Djordjevi S. Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-D wave dual drainage simulations[J]. Urban Water Journal, 2016, 13(8): 830-840. DOI:10.1080/1573062x.2015.1041991.
[7] Hsu M, Chen S, Chang T. Inundation simulation for urban drainage basin with storm sewer system[J].Journal of Hydrology, 2000, 234(1/2): 21-37. DOI:10.1016/s0022-1694(00)00237-7.
[8] Rossman L A. Storm water management model user’s manual, Version 5.0. U.S. Environ. Prot. Agency [EB/OL].(2010)[2020-03-21]. https://doi.org/PNR61.
[9] Mignot E, Paquier A, Haider S. Modeling floods in a dense urban area using 2D shallow water equations[J]. Journal of Hydrology, 2006, 327(1/2): 186-199. DOI:10.1016/j.jhydrol.2005.11.026.
[10] Djordjevi S, Prodanovi D, Maksimovi. An approach to simulation of dual drainage[J]. Water Science and Technology, 1999, 39(9): 95-103. DOI:10.2166/wst.1999.0451.
[11] Schmitt T, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology, 2004, 299(3/4): 300-311. DOI:10.1016/s0022-1694(04)00374-9.
[12] Djordjevi S, Prodanovi D, Maksimovi, et al. SIPSON-simulation of interaction between pipe flow and surface overland flow in networks[J]. Water Science and Technology, 2005, 52(5): 275-283. DOI:10.2166/wst.2005.0143.
[13] Nasello C, Tucciarelli T. Dual multilevel urban drainage model[J]. Journal of Hydraulic Engineering, 2005, 131(9): 748-754. DOI:10.1061/(asce)0733-9429(2005)131:9(748).
[14] Chang T J, Wang C H, Chen A S. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas[J].Journal of Hydrology, 2015, 524: 662-679. DOI:10.1016/j.jhydrol.2015.03.014.
[15] Abbasizadeh H, Nazif S, Hosseini S A, et al. Development of a coupled model for simulation of urban drainage process based on cellular automata approach[J]. Irrigation and Drainage, 2018, 67(2): 269-281. DOI:10.1002/ird.2186.
[16] Li D M, Wang X, Xie Y Y, et al. A multi-level and modular model for simulating the urban flooding and its application to Tianjin City[J]. Natural Hazards, 2016, 82(3): 1947-1965. DOI:10.1007/s11069-016-2279-z.
[17] Bazin P H, Nakagawa H, Kawaike K, et al. Modeling flow exchanges between a street and an underground drainage pipe during urban floods[J]. Journal of Hydraulic Engineering, 2014, 140(10): 04014051. DOI:10.1061/(asce)hy.1943-7900.0000917.
[18] Hakiel J, Szydowski M. Interaction between storm water conduit flow and overland flow for numerical modelling of urban area inundation[M]//Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces. Cham, Switzerland: Springer International Publishing, 2016: 23-34. DOI:10.1007/978-3-319-27750-9_3.
[19] Rubinato M, Shuksimth J, Saul A. Experimental investigation of flow-interactions between above and below ground drainage systems through a manhole [R/OL]. CUNY Academic Works, 2014. http://academicworks.cuny.edu/cc_conf_hic/14.
[20] Rubinato M, Lee S, Martins R, et al. Surface to sewer flow exchange through circular inlets during urban flood conditions[J]. Journal of Hydroinformatics, 2018, 20(3): 564-576. DOI:10.2166/hydro.2018.127.
[21] Rubinato M, Martins R, Kesserwani G, et al. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions[J]. Journal of Hydrology, 2017, 552: 421-432. DOI:10.1016/j.jhydrol.2017.06.024.
[22] Djordjevi S, Saul A J, Tabor G R, et al. Experimental and numerical investigation of interactions between above and below ground drainage systems[J]. Water Science and Technology, 2013, 67(3): 535-542. DOI:10.2166/wst.2012.570.
[23] Fach S, Sitzenfrei R, Rauch W. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation[J]. Water Science and Technology, 2009, 60(12): 3035-3043. DOI:10.2166/wst.2009.752.
[24] Lopes P, Leandro J, Carvalho R F, et al. Numerical and experimental investigation of a gully under surcharge conditions[J]. Urban Water Journal, 2015, 12(6): 468-476. DOI:10.1080/1573062x.2013.831916.
[25] Beg M N A, Carvalho R F, Leandro J. Effect of surcharge on gully-manhole flow[J]. Journal of Hydro-Environment Research, 2018, 19: 224-236. DOI:10.1016/j.jher.2017.08.003.
[26] Leandro J, Lopes P, Carvalho R, et al. Numerical and experimental characterization of the 2D vertical average-velocity plane at the center-profile and qualitative air entrainment inside a gully for drainage and reverse flow[J]. Computers & Fluids, 2014, 102: 52-61. DOI:10.1016/j.compfluid.2014.05.032.
[27] Mohsin M, Kaushal D R. 3D CFD validation of invert trap efficiency for sewer solid management using VOF model[J]. Water Science and Engineering, 2016, 9(2): 106-114. DOI:10.1016/j.wse.2016.06.006.
[28] Patankar S, Spalding D. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. DOI:10.1016/0017-9310(72)90054-3.