[1] Luo Z X, Xing Y Z, Ling Y C, et al. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR[J]. Nature Communications, 2015, 6: 6358. DOI:10.1038/ncomms7358.
[2] Sparreboom W, van den Berg A, Eijkel J C T. Principles and applications of nanofluidic transport[J]. Nature Nanotechnology, 2009, 4(11): 713-720. DOI:10.1038/nnano.2009.332.
[3] Lin K B, Lin C, Polster J W, et al. Charge inversion and calcium gating in mixtures of ions in nanopores[J]. Journal of the American Chemical Society, 2020, 142(6): 2925-2934. DOI:10.1021/jacs.9b11537.
[4] Yu Grosberg A, Nguyen T T, Shklovskii B. Colloquium: The physics of charge inversion in chemical and biological systems[J]. Reviews of Modern Physics, 2002, 74(2): 329-345. DOI:10.1103/RevModPhys.74.329.
[5] Chou K H, McCallum C, Gillespie D, et al. An experimental approach to systematically probe charge inversion in nanofluidic channels[J]. Nano Letters, 2018, 18(2): 1191-1195. DOI:10.1021/acs.nanolett.7b04736.
[6] Loessberg-Zahl J, Janssen K G H, McCallum C, et al.(Almost)stationary isotachophoretic concentration boundary in a nanofluidic channel using charge inversion[J]. Analytical Chemistry, 2016, 88(12): 6145-6150. DOI:10.1021/acs.analchem.6b01701.
[7] Li S X, Guan W H, Weiner B, et al. Direct observation of charge inversion in divalent nanofluidic devices[J]. Nano Letters, 2015, 15(8): 5046-5051. DOI:10.1021/acs.nanolett.5b01115.
[8] Fahad H M, Gupta N, Han R, et al. Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers[J]. ACS Nano, 2018, 12(3): 2948-2954. DOI:10.1021/acsnano.8b00580.
[9] Qiao R, Aluru N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow[J]. Physical Review Letters, 2004, 92(19): 198301. DOI:10.1103/PhysRevLett.92.198301.
[10] van der Heyden F H J, Stein D, Besteman K, et al. Charge inversion at high ionic strength studied by streaming currents[J]. Physical Review Letters, 2006, 96(22): 224502. DOI:10.1103/PhysRevLett.96.224502.
[11] He Y, Gillespie D, Boda D, et al. Tuning transport properties of nanofluidic devices with local charge inversion[J]. Journal of the American Chemical Society, 2009, 131(14): 5194-5202. DOI:10.1021/ja808717u.
[12] Besteman K, van Eijk K, Lemay S G. Charge inversion accompanies DNA condensation by multivalent ions[J]. Nature Physics, 2007, 3(9): 641-644. DOI:10.1038/nphys697.
[13] Favaro M, Jeong B, Ross P N, et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface[J]. Nature Communications, 2016, 7: 12695. DOI:10.1038/ncomms12695.
[14] Besteman K, Zevenbergen M A G, Lemay S G. Charge inversion by multivalent ions: Dependence on dielectric constant and surface-charge density[J]. Physical Review E, 2005, 72(6): 061501. DOI:10.1103/PhysRevE.72.061501.
[15] Tan Q Y, Zhao G T, Qiu Y H, et al. Experimental observation of the ion-ion correlation effects on charge inversion and strong adhesion between mica surfaces in aqueous electrolyte solutions[J]. Langmuir, 2014, 30(36): 10845-10854. DOI:10.1021/la5024357.
[16] Wang Z Y, Wu J Z. Ion association at discretely-charged dielectric interfaces: Giant charge inversion[J]. Journal of Chemical Physics, 2017, 147(2): 024703. DOI:10.1063/1.4986792.
[17] Luan B Q, Chen K L, Zhou R H. Mechanism of divalent-ion-induced charge inversion of bacterial membranes[J]. Journal of Physical Chemistry Letters, 2016, 7(13): 2434-2438. DOI:10.1021/acs.jpclett.6b01065.
[18] Qiu Y H, Ma J, Chen Y F. Ionic behavior in highly concentrated aqueous solutions nanoconfined between discretely charged silicon surfaces[J]. Langmuir, 2016, 32(19): 4806-4814. DOI:10.1021/acs.langmuir.6b01149.
[19] Rouzina I, Bloomfield V A. Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud[J]. The Journal of Physical Chemistry, 1996, 100(23): 9977-9989. DOI:10.1021/jp960458g.
[20] Martín-Molina A, Rodríguez-Beas C, Faraudo J. Charge reversal in anionic liposomes: Experimental demonstration and molecular origin[J]. Physical Review Letters, 2010, 104(16): 168103. DOI:10.1103/PhysRevLett.104.168103.
[21] Sugimoto T, Nishiya M, Kobayashi M. Charge reversal of sulfate latex particles in the presence of lanthanum ion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 18-26. DOI:10.1016/j.colsurfa.2019.03.077.
[22] Tivony R, Yaakov D B, Silbert G, et al. Direct observation of confinement-induced charge inversion at a metal surface[J]. Langmuir, 2015, 31(47): 12845-12849. DOI:10.1021/acs.langmuir.5b03326.
[23] Miller M, Chu M Q, Lin B H, et al. Observation of ordered structures in counterion layers near wet charged surfaces: A potential mechanism for charge inversion[J]. Langmuir, 2016, 32(1): 73-77. DOI:10.1021/acs.langmuir.5b04058.
[24] Martin-Molina A, Calero C, Faraudo J, et al. The hydrophobic effect as a driving force for charge inversion in colloids[J]. Soft Matter, 2009, 5(7): 1350-1353. DOI:10.1039/B820489F.
[25] Wang Z Y, Zhang P L, Ma Z W. On the physics of both surface overcharging and charge reversal at heterophase interfaces[J]. Physical Chemistry Chemical Physics, 2018, 20(6): 4118-4128. DOI:10.1039/C7CP08117K.
[26] Levin Y. Electrostaticcorrelations: From plasma to biology[J]. Reports on Progress in Physics, 2002, 65(11): 1577-1632. DOI:10.1088/0034-4885/65/11/201.
[27] Deng M G, Karniadakis G E. Electrostatic correlations near charged planar surfaces[J]. The Journal of Chemical Physics, 2014, 141(9): 094703. DOI:10.1063/1.4894053.
[28] Laanait N, Mihaylov M, Hou B, et al. Tuning ion correlations at an electrified soft interface[J]. PNAS, 2012, 109(50): 20326-20331. DOI:10.1073/pnas.1214204109.
[29] Wang Z Y, Ma Z W, Ma Y Q. Suppression and promotion of charge inversion in the presence of multivalent coions[J]. Physical Review E—Statistical, Nonlinear and Soft Matter Physics, 2015, 92(6): 060303. DOI:10.1103/PhysRevE.92.060303.
[30] Israelachvili J N. Intermolecular and surface forces[M]. New York: Elsevier Science, 2011:293-335.