|Table of Contents|

[1] Yang Nan, Zhu Zimin, Yuan Tiejiang, et al. Research on resonance fault caused by dc magnetic biasing in ultrahigh voltage transformer with parallel static var compensator [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 301-312. [doi:10.3969/j.issn.1003-7985.2020.03.008]
Copy

Research on resonance fault caused by dc magnetic biasing in ultrahigh voltage transformer with parallel static var compensator()
直流偏磁引起的并联SVC特高压变压器谐振研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
301-312
Research Field:
Electrical Engineering
Publishing date:
2020-09-20

Info

Title:
Research on resonance fault caused by dc magnetic biasing in ultrahigh voltage transformer with parallel static var compensator
直流偏磁引起的并联SVC特高压变压器谐振研究
Author(s):
Yang Nan1 Zhu Zimin2 3 Yuan Tiejiang1
1School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
2School of Electrical Engineering, Xinjiang University of Technology, Urumqi 830046, China
3Electric Power Research Institute, State Grid Xinjiang Electric Power Company, Urumqi 836500, China
杨南1 朱子明2 3 袁铁江1
1大连理工大学电气工程学院, 大连 116024; 2新疆大学电气工程学院, 乌鲁木齐 830046; 3国网新疆公司电力科学研究院, 乌鲁木齐 836500
Keywords:
static var compensator ultra-high voltage transformer magnetic biasing resonance fault
静止无功补偿器 特高压变压器 直流偏磁 谐振故障
PACS:
TM76
DOI:
10.3969/j.issn.1003-7985.2020.03.008
Abstract:
For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+ the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing, a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform. Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer, which will approach the 4th harmonic point under magnetic biasing. Based on the fault analysis, a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches. Under dc magnetic biasing, the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point. In order to avoid the 7th harmonic increasement caused by this method, the firing angle of the TCR branches is locked between 130° and 180°. The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.
针对直流偏磁引起的并联TCR+FC型SVC特高压变压器谐振问题, 基于MATLAB/Simulink平台, 构建了用于阻抗频率特性分析的并联SVC的特高压变压器仿真模型与基于经典Jiles-Atherton磁滞理论的变压器场路耦合仿真模型.理论和仿真结果表明, 特高压变压器并联谐振的形成机理为直流偏磁情况下, 并联SVC投入运行时, 变压器低压侧谐振点趋近于4次谐波.基于此, 提出一种谐振控制思路, 即在原FC滤波支路上串联含旁路开关的电抗器.在直流偏磁下, 旁路开关的切断可以提升FC滤波支路的串抗率, 从而改变并联谐振点.并针对此谐振控制方法带来的7次谐波问题, 提出了锁定TCR支路控制角在130°~180°区间的改进措施.以某750 kV特高压变压器为例, 验证了谐波控制方法对特高压变压器并联谐振的抑制作用, 仿真结果表明谐振故障机理的分析及其谐振控制方法是正确和可行的.

References:

[1] Liu L G, Qian C, Zhu X, et al. Calculation of geomagnetically induced currents reactive power loss disturbance in Gansu Grid with parameter K [J]. Power System Technology, 2016, 40(8):2370–2375. DOI:10.13335/j.1000-3673.pst.2016.08.018. (in Chinese)
[2] Rezaei-Zare A. Reactive power loss versus GIC characteristic of single-phase transformers[J].IEEE Transactions on Power Delivery, 2015, 30(3): 1639-1640. DOI:10.1109/TPWRD.2015.2394311.
[3] Zhang S M, Liu L G. Research on the GIC governance scheme of the Xinjiang 750-kV power grid based on an equal allocation method[J].IEEE Access, 2020, 8: 75419-75427. DOI:10.1109/access.2020.2989167.
[4] Annakkage U D, McLaren P G, Dirks E, et al. A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis[J].IEEE Transactions on Power Delivery, 2000, 15(1): 57-61. DOI:10.1109/61.847229.
[5] Overbye T J, Hutchins T R, Shetye K, et al. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies[C]//2012 North American Power Symposium. Champaign, IL, USA, 2012: 1-7. DOI:10.1109/NAPS.2012.6336365.
[6] Boteler D H, Bradley E. On the interaction of power transformers and geomagnetically induced currents[J].IEEE Transactions on Power Delivery, 2016, 31(5): 2188-2195. DOI:10.1109/TPWRD.2016.2576400.
[7] Li B, Wang Z Z, Liu K, et al. Research on winding current of UHV transformer under DC-bias [J].Transactions of China Electrotechnical Society, 2020, 35(7):1422-1431.DOI:10.19595/j.cnki.1000-6753.tces.190293. (in Chinese)
[8] Chen D Z, Feng Z Y, Wang Q P, et al. Study of analysis and experiment for ability to withstand DC bias in power transformers[J].IEEE Transactions on Magnetics, 2018, 54(11): 1-6. DOI:10.1109/TMAG.2018.2844208.
[9] Chen Z W, Li H M, Liu L W, et al. DC bias treatment of hybrid type transformer based on magnetic flux modulation mechanism[J].IEEE Transactions on Magnetics, 2019, 55(6): 1-4. DOI:10.1109/TMAG.2019.2903566.
[10] Yao Y Y. Research on the DC bias phenomena of large power transformers [D].Shenyang: Shenyang University of Technology, 2000.
[11] Zhang S M, Liu L G. A mitigation method based on the principle of GIC-even distribution in whole power grids[J].IEEE Access, 2020, 8: 65096-65103. DOI:10.1109/access.2020.2984262.
[12] Yang Y F, Xu B Y, Mei G H, et al.Selection of series reactance ratio of substation capacitor banks in AC/DC hybrid power grid [J]Electric Power Automation Equipment, 2009, 29(6):29-34.(in Chinese)
[13] Liu L G, Chen Q, Qin X P. Calculation of geomagnetically induced currents reactive power loss disturbance in China’s UHV power grid considering the influence of 500 kV power grid[J].Scientia Sinica(Technological), 2016, 46(11):1146-1156.(in Chinese)
[14] Liu L G, Wu W L. Security risk assessment ideas and theoretical framework for power system considering geomagnetic storm [J].Proceedings of the CSEE, 2014, 34(10):1583-1591.DOI:10.13334/j.0258-8013.pcsee.2014.10.009(in Chinese)
[15] Liu T T, Liu L G. Analysis of impact of transformer DC bias harmonic on shunt capacitors [J].Modern Electric Power, 2012, 29(1):29-32.DOI:10.19725/j.cnki.1007-2322.2012.01.007. (in Chinese)
[16] Zhang B. Study on GIC effect of large power transformers [D].Beijing: North China Electric Power University, 2010.(in Chinese)
[17] Li Z, Li Q M, Li C Y, et al. Queries on the J-A modeling theory of the magnetization process in ferromagnets and proposed correction method [J].Proceedings of the CSEE, 2011, 31(3):124-131.DOI:10.13334/j.0258-8013.pcsee.2011.03.001(in Chinese)
[18] Li Z. Study on magnetization mechanism and modelling methodology of power transformer under DC bias [D]. Jinan: Shandong University, 2011.
[19] Emanuel A E. Powers in nonsinusoidal situations—a review of definitions and physical meaning[J].IEEE Transactions on Power Delivery, 1990, 5(3): 1377-1389. DOI:10.1109/61.57980.
[20] Peng C G, Liu L G. Study on direct current bias of 750 kV autotransformer based on JA theory [J].East China Electric Power, 2010, 38(3): 349–353.(in Chinese)

Memo

Memo:
Biographies: Yang Nan(1990—), male, doctor, yangn1@dlut.edu.cn; Yuan Tiejiang(corresponding author), male, doctor, professor, ytj1975@dlut.edu.cn.
Foundation item: The Science Foundation of State Grid Xinjiang(No.SGTYHT/19-JS-215).
Citation: Yang Nan, Zhu Zimin, Yuan Tiejiang.Research on resonance fault caused by dc magnetic biasing in ultra high voltage transformer with parallel static var compensator[J].Journal of Southeast University(English Edition), 2020, 36(3):301-312.DOI:10.3969/j.issn.1003-7985.2020.03.008.
Last Update: 2020-09-20