|Table of Contents|

[1] Zhou Lin, Zhai Qian,. Simulation of the pore size distribution functionfor a deformable soil [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 328-333. [doi:10.3969/j.issn.1003-7985.2020.03.011]
Copy

Simulation of the pore size distribution functionfor a deformable soil()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
328-333
Research Field:
Civil Engineering
Publishing date:
2020-09-20

Info

Title:
Simulation of the pore size distribution functionfor a deformable soil
Author(s):
Zhou Lin Zhai Qian
Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
The Capital Construction Department, Southeast University, Nanjing 210096, China
Keywords:
pore size distribution function simulation unimodal bimodal
PACS:
TU470
DOI:
10.3969/j.issn.1003-7985.2020.03.011
Abstract:
In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil, both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters. The w-SWCC defines the relationship between the gravimetric water content and soil suction. The SC illustrates the variation of the void ratio with respect to different water contents. 10 points in the w-SWCC were selected as initial conditions. By adopting different void ratios, a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained. Based on Kelvin’s capillary law, the S-SWCCs can be converted into a group of PSDFs. In the group of PSDFs, each PSDF represents the geometric pore space in soil corresponding to a given void ratio. From the proposed methodology, it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed. The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test. In addition, the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.

References:

[1] Tuli A, Hopmans J W, Rolston D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J].Soil Science Society of America Journal, 2005, 69(5): 1361-1371. DOI:10.2136/sssaj2004.0332.
[2] Childs E C, Collis-George N. The permeability of porousmaterials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 201(1066): 392-405.DOI:10.1098/rspa.1950.0068.
[3] Marshall T J. A relation between permeability and sizedistribution of pores[J].Journal of Soil Science, 1958, 9(1):1-8.DOI:10.1111/j.1365-2389.1958.tb01892.x.
[4] Kunze R J, Uehara G, Graham K. Factors important in the calculation of hydraulic conductivity[J].Soil Science Society of America Journal, 1968, 32(6): 760-765. DOI:10.2136/sssaj1968.03615995003200060020x.
[5] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.DOI:10.1029/WR012i003p00513.
[6] Fredlund D G, Xing A Q, Huang S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533-546. DOI:10.1139/t94-062.
[7] Zhai Q, Rahardjo H. Estimation of permeability functionfrom the soil-water characteristic curve[J].EngineeringGeology, 2015, 199: 148-156. DOI:10.1016/j.enggeo.2015.11.001.
[8] Zhai Q, Rahardjo H, Satyanaga A. A pore-size distribution function based method for estimation of hydraulic properties of sandy soils[J]. Engineering Geology, 2018, 246: 288-292.DOI:10.1016/j.enggeo.2018.09.031.
[9] Zhai Q, Rahardjo H, Satyanaga A, et al. Role of the pore-size distribution function on water flow in unsaturated soil[J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(1): 10-20. DOI:10.1631/jzus.A1800347.
[10] Zhai Q, Rahardjo H, Satyanaga A. Estimation of air permeability function from soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2019, 56(4): 505-513. DOI:10.1139/cgj-2017-0579.
[11] Vanapalli S K, Fredlund D G, Pufahl D, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. DOI:10.1139/t96-060.
[12] Zhai Q, Rahardjo H, Satyanaga A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-1990. DOI:10.1007/s11440-019-00785-y.
[13] Zhai Q, Rahardjo H, Satyanaga A, et al. Effect of the uncertainty in soil-water characteristic curve on the estimated shear strength of unsaturated soil[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(4): 317-330. DOI:10.1631/jzus.a1900589.
[14] Zhai Q, Rahardjo H, Satyanaga A, et al. Estimation of tensile strength of sandy soil from soil-water characteristic curve[J]. Acta Geotechnica, 2020: 1-11. DOI:10.1007/s11440-020-01013-8.
[15] Fredlund D G, Xing A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. DOI:10.1139/t94-061.
[16] Zhai Q, Rahardjo H, Satyanaga A, et al. Framework to estimate the soil-water characteristic curve for soils with different void ratios[J]. Bulletin of Engineering Geology and the Environment[J/OL](2020-05-08)[2020-08-20].https://link.springer.com/content/pdf/10.1007/s10064-020-01825-8.pdf.
[17] Childs E C. The use of soil moisture characteristics in soil studies[J]. Soil Science, 1940, 50(4): 239-252. DOI:10.1097/00010694-194010000-00001.
[18] Childs E C. Stability of clay soils[J]. Soil Science, 1942, 53(2): 79-92. DOI:10.1097/00010694-194202000-00001.
[19] Diamond S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7-23. DOI:10.1346/ccmn.1970.0180103.
[20] Spaans E J A, Baker J M. The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1): 13-19. DOI:10.2136/sssaj1996.03615995006000010005x.
[21] Koopmans R W R, Miller R D. Soil freezing and soil water characteristic curves[J]. Soil Science Society of America Journal, 1966, 30(6): 680-685. DOI:10.2136/sssaj1966.03615995003000060011x.
[22] Azmatch T F, Sego D C, Arenson L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils[J]. Cold Regions Science and Technology, 2012, 83/3: 103-109. DOI:10.1016/j.coldregions.2012.07.002.
[23] Ren J P, Vanapalli S K. Comparison of soil-freezing and soil-water characteristic curves of two Canadian soils[J]. Vadose Zone Journal, 2019, 18(1): 1-14. DOI:10.2136/vzj2018.10.0185.
[24] Brooks R H, Corey A T. Hydraulic properties of porous media[J]. American Society of Agricultural Engineers, 1964, 7: 26-28. DOI:10.1016/j.trc.2012.10.009.
[25] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. DOI:10.2136/sssaj1980.03615995004400050002x.
[26] Satyanaga A, Rahardjo H, Leong E C, et al. Water characteristic curve of soil with bimodal grain-size distribution[J]. Computers and Geotechnics, 2013, 48: 51-61. DOI:10.1016/j.compgeo.2012.09.008.
[27] Fredlund M D, Wilson G W, Fredlund D G. Representation and estimation of the shrinkage curve[C]//Proceedings of the 3rd Internationl Conference on Unsaturated Soils. Recife, Brazil, 2002: 145-149.
[28] Zhai Q, Rahardjo H, Satyanaga A. Effect of bimodal soil-water characteristic curve on the estimation of permeability function[J]. Engineering Geology, 2017, 230: 142-151. DOI:10.1016/j.enggeo.2017.09.025.
[29] Li Z S, Benchouk A, Derfouf F E M, et al. Global representation of the drying-wetting curves of four engineering soils: Experiments and correlations[J]. Acta Geotechnica, 2018, 13(1): 51-71. DOI:10.1007/s11440-017-0527-3.
[30] Goebel M, Bachmann J, Woche S K, et al. Water potential and aggregate size effects on contact angle and surface energy[J]. Soil Science Society of America Journal, 2004, 68(2): 383-393. DOI:10.2136/sssaj2004.3830.
[31] Woche S K, Goebel M O, Kirkham M B, et al. Contact angle of soils as affected by depth, texture, and land management[J]. European Journal of Soil Science, 2005, 56(2): 239-251. DOI:10.1111/j.1365-2389.2004.00664.x.
[32] Ramírez-Flores J C, Woche S K, Bachmann J, et al. Comparing capillary rise contact angles of soil aggregates and homogenized soil[J]. Geoderma, 2008, 146(1/2): 336-343. DOI:10.1016/j.geoderma.2008.05.032.
[33] Ganz C, Bachmann J, Lamparter A, et al. Specific processes during in situ infiltration into a sandy soil with low-level water repellency[J]. Journal of Hydrology, 2013, 484: 45-54. DOI:10.1016/j.jhydrol.2013.01.009.
[34] Cai G Q, Zhou A N, Sheng D C. Permeability function for unsaturated soils with different initial densities[J]. Canadian Geotechnical Journal, 2014, 51(12): 1456-1467. DOI:10.1139/cgj-2013-0410.
[35] Dieudonné A, Della Vecchia G, Charlier R, et al. Influence of microfabric evolution on the retention behaviour of compacted clayey soils[M]//Unsaturated Soils: Research & Applications. CRC Press, 2014: 679-684. DOI:10.1201/b17034-95.
[36] Gao Y, Sun D A. Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction[J]. Computers and Geotechnics, 2017, 91: 17-26. DOI:10.1016/j.compgeo.2017.06.016.

Memo

Memo:
Biographies: Zhou Lin(1985—), male, master; Zhai Qian(corresponding author), male, doctor, associate professor, 101012332@seu.edu.cn.
Citation: Zhou Lin, Zhai Qian. Simulation of the pore size distribution function for a deformable soil[J].Journal of Southeast University(English Edition), 2020, 36(3):328-333.DOI:10.3969/j.issn.1003-7985.2020.03.011.
Last Update: 2020-09-20