[1] Singh K, Radhakrishna A S, Both A, et al. Why reinvent the wheel:Let’s build question answering systems together[C]//Proceedings of the 2018 World Wide Web Conference. Lyon, France, 2018:1247-1256. DOI:10.1145/3178876.3186023.
[2] Mendes P N, Jakob M, García-Silva A, et al. DBpedia spotlight:Shedding light on the web of documents[C]//Proceedings of the 7th International Conference on Semantic Systems. Graz, Austria, 2011:1-8. DOI:10.1145/2063518.2063519.
[3] Hoffart J, Yosef M A, Bordino I, et al. Robust disambiguation of named entities in text[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, UK, 2011:782-792.
[4] Moro A, Raganato A, Navigli R. Entity linking meets word sense disambiguation:A unified approach[J]. Transactions of the Association for Computational Linguistics, 2014, 2:231-244. DOI:10.1162/tacl_a_00179.
[5] Speck R, Ngonga Ngomo A C. Ensemble learning for named entity recognition[C]//Proceedings of the 13th International Semantic Web Conference. Trentino, Italy, 2014:519-534. DOI:10.1007/978-3-319-11964-9.
[6] Ferragina P, Scaiella U. TAGME:On-the-fly annotation of short text fragments(by wikipedia entities)[C]//Proceedings of the 19th ACM Conference on Information and Knowledge Management. Toronto, Canada, 2010:1625-1628. DOI:10.1145/1871437.1871689.
[7] Waitelonis J, Sack H. Named entity linking in #Tweets with KEA[C]//Proceedings of the 6th Workshop on ‘Making Sense of Microposts’. Montreal, Canada, 2016:61-63.
[8] Singh K, Mulang I O, Lytra I, et al. Capturing knowledge in semantically-typed relational patterns to enhance relation linking[C]//Proceedings of the Knowledge Capture Conference. Austin, TX, USA, 2017:1-8. DOI:10.1145/3148011.3148031.
[9] Mulang I O, Singh K, Orlandi F. Matching natural language relations to knowledge graph properties for question answering[C]//Proceedings of the 13th International Conference on Semantic Systems. Amsterdam, the Netherlands, 2017:89-96. DOI:10.1145/3132218.3132229.
[10] Yu M, Yin W, Hasan K S, et al. Improved neural relation detection for knowledge base question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada, 2017:571-581. DOI:10.18653/v1/p17-1053.
[11] Dubey M, Banerjee D, Chaudhuri D, et al. EARL:Joint entity and relation linking for question answering over knowledge graphs[C]//Proceedings of the 17th International Semantic Web Conference. Monterey, CA, USA, 2018:108-126. DOI:10.1007/978-3-030-00671-6_7.
[12] Sakor A, Mulang I O, Singh K, et al. Old is gold:linguistic driven approach for entity and relation linking of short text[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Minneapolis, MN, USA, 2019:2336-2346. DOI:10.18653/v1/n19-1243.
[13] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the International Conference on Learning Representations. San Diego, USA, 2015.
[14] Trivedi P, Maheshwari G, Dubey M, et al. LC-QuAD:A corpus for complex question answering over knowledge graphs[C]//Proceedings of the 16th International Semantic Web Conference. Vienna, Austria, 2017:210-218. DOI:10.1007/978-3-319-68204-4_22.
[15] Usbeck R, RF6;der M, Ngomo A C N, et al. GERBIL:General entity annotator benchmarking framework[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2015:1133-1143. DOI:10.1145/2736277.2741626.
[16] Pennington J, Socher R, Manning C D. GloVe:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar, 2014:1532-1543. DOI:10.3115/v1/d14-1162.
[17] Devlin J, Chang M, Lee K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis, MN, USA, 2019:4171-4186.