[1] de Oliveira Ferreira M E, Vaz B G, Borba C E, et al. Modified activated carbon as a promising adsorbent for quinoline removal[J]. Microporous and Mesoporous Materials, 2019, 277: 208-216. DOI:10.1016/j.micromeso.2018.10.034.
[2] Nieto-Delgado C, Gutiérrez-Martínez J, Rangel-Méndez J R. Modified activated carbon with interconnected fibrils of iron-oxyhydroxides using Mn2+ as morphology regulator, for a superior arsenic removal from water[J]. Journal of Environmental Sciences, 2019, 76: 403-414. DOI:10.1016/j.jes.2018.06.002.
[3] Cao Y H, Wang K L, Wang X M, et al. Adsorption of butanol vapor on active carbons with nitric acid hydrothermalmodification[J]. Bioresource Technology, 2015, 196: 525-532. DOI:10.1016/j.biortech.2015.08.027.
[4] Yin S L, Zhu B Z, Sun Y L, et al. Effect of Mn addition on the low-temperature NH3-selective catalytic reduction of NOx over Fe2O3/activated coke catalysts: Experiment and mechanism[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(5): e2231. DOI:10.1002/apj.2231.
[5] Qin Y H, Huang L, Zheng J X, et al. Low-temperature selective catalytic reduction of NO with CO over A-Cu-BTC and AOx/CuOy/C catalyst[J]. Inorganic Chemistry Communications, 2016, 72: 78-82. DOI:10.1016/j.inoche.2016.08.018.
[6] Xu W T, Zhou J C, Li H, et al. Microwave-assisted catalytic reduction of NO into N2 by activated carbon supported Mn2O3 at low temperature under O2 excess[J]. Fuel Processing Technology, 2014, 127: 1-6. DOI:10.1016/j.fuproc.2014.06.005.
[7] Wang Y L, Li X X, Zhan L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2274-2278. DOI:10.1021/ie504074h.
[8] Yao L, Liu Q C, Mossin S, et al. Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH3-SCR at low temperatures[J]. Journal of Hazardous Materials, 2020, 387: 121704. DOI:10.1016/j.jhazmat.2019.121704.
[9] Putluru S S R, Schill L, Jensen A D, et al. Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation: Promising for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2015, 165: 628-635. DOI:10.1016/j.apcatb.2014.10.060.
[10] Liu Y J, Qu Y F, Guo J X, et al. Thermal regeneration of manganese supported on activated carbons treated by HNO3 for desulfurization[J]. Energy & Fuels, 2015, 29(3): 1931-1940. DOI:10.1021/ef502655k.
[11] Gu T, Gao F Y, Tang X L, et al. Fe-modified Ce-MnOx/ACFN catalysts for selective catalytic reduction of NOx by NH3 at low-middle temperature[J]. Environmental Science and Pollution Research, 2019, 26(27): 27940-27952. DOI:10.1007/s11356-019-05976-4.
[12] Yang J, Ren S, Zhang T S, et al. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chemical Engineering Journal, 2020, 379: 122398. DOI:10.1016/j.cej.2019.122398.
[13] Zhang J, Sun J B, Ahmed Shifa T, et al. Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 372: 1047-1055. DOI:10.1016/j.cej.2019.04.202.
[14] Li Y, Xu Z Y, Wang D W, et al. Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor[J]. Electrochimica Acta, 2017, 251: 344-354. DOI:10.1016/j.electacta.2017.08.146.
[15] Pasel J, KE4;DF;ner P, Montanari B, et al. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction(SCR)of NO with NH3[J]. Applied Catalysis B: Environmental, 1998, 18(3/4): 199-213. DOI:10.1016/S0926-3373(98)00033-2.
[16] Zeng S W, Zhao R R, Li A J, et al. MnO/Carbon fibers prepared by an electrospinning method and their properties used as anodes for lithium ion batteries[J]. Applied Surface Science, 2019, 463: 211-216. DOI:10.1016/j.apsusc.2018.08.233.
[17] Kamran U, Heo Y J, Lee J W, et al. Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media[J]. Journal of Alloys and Compounds, 2019, 794: 425-434. DOI:10.1016/j.jallcom.2019.04.211.
[18] Saputra E, Muhammad S, Sun H Q, et al. Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions[J].Applied Catalysis B: Environmental, 2013, 142/143: 729-735. DOI:10.1016/j.apcatb.2013.06.004.
[19] Shan J, Wang J J, Zhao Y, et al. Nitrogen-doped porous carbon/Mn3O4 composites as anode materials for lithium-ion batteries[J]. Solid State Sciences, 2019, 92: 89-95. DOI:10.1016/j.solidstatesciences.2019.03.001.
[20] Lin Y T, Li Y R, Xu Z C, et al. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323. DOI:10.1016/j.fuel.2018.01.092.
[21] Liu Z, Wang Z J, Qing S J, et al. Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization[J]. Applied Catalysis B: Environmental, 2018, 232: 86-92. DOI:10.1016/j.apcatb.2018.03.045.
[22] Yu J, So J. Synthesis and characterization of nitrogen-containing hydrothermal carbon with ordered mesostructure[J]. Chemical Physics Letters, 2019, 716: 237-246. DOI:10.1016/j.cplett.2018.12.014.
[23] Bian Y, Bian Z Y, Zhang J X, et al. Adsorption of cadmium ions from aqueous solutions by activated carbon with oxygen-containing functional groups[J]. Chinese Journal of Chemical Engineering, 2015, 23(10): 1705-1711. DOI:10.1016/j.cjche.2015.08.031.
[24] Deng L L, Lu B Q, Li J L, et al. Effect of pore structure and oxygen-containing groups on adsorption ofdibenzothiophene over activated carbon[J]. Fuel, 2017, 200: 54-61. DOI:10.1016/j.fuel.2017.03.018.
[25] Fan Q Y, Sun J X, Chu L, et al. Effects ofchemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar[J]. Chemosphere, 2018, 207: 33-40. DOI:10.1016/j.chemosphere.2018.05.044.
[26] Ambrico Y, Castro M A, Lee J, et al. Adsorption of creatinine on active carbons with nitric acid hydrothermal modification[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 347-356. DOI:10.1016/j.jtice.2016.06.008.
[27] Lakshmi S D, Avti P K, Hegde G. Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review[J]. Nano-Structures & Nano-Objects, 2018, 16: 306-321. DOI:10.1016/j.nanoso.2018.08.001.
[28] Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. Journal of Catalysis, 2012, 288: 74-83. DOI:10.1016/j.jcat.2012.01.003.