|Table of Contents|

[1] Nguyen Van Liem, , Zhang Jianrun, et al. Influence of micro asperity contact and radial clearanceon the tribological properties of crankpin bearings [J]. Journal of Southeast University (English Edition), 2021, 37 (3): 264-271. [doi:10.3969/j.issn.1003-7985.2021.03.005]
Copy

Influence of micro asperity contact and radial clearanceon the tribological properties of crankpin bearings()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 3
Page:
264-271
Research Field:
Traffic and Transportation Engineering
Publishing date:
2021-09-20

Info

Title:
Influence of micro asperity contact and radial clearanceon the tribological properties of crankpin bearings
Author(s):
Nguyen Van Liem1 2 3 Zhang Jianrun1 Huang Dacheng1
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
3Key Laboratory of Intelligent Conveying Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
Keywords:
crankpin bearing tribological property slider-crank mechanism asperity contact
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2021.03.005
Abstract:
A new hybrid numerical method that couples the dynamic slider-crank mechanism(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effect of micro asperity contact on the tribological properties of a CB. In the hybrid model, the dynamic equations of the SCM are established based on the Newton method, while the lubrication equations of the CB are established on the basis of the Reynolds equation. Experimental data of the engine are also used in simulation analyses to enhance the reliability of the results. The load-bearing capacity(LBC)and friction force of the CB are selected as objective functions. Results show that the LBC has a negligible effect on the tribological properties of the CB, but the friction force greatly affects the resistance of the bearing under different radial clearances and surface roughness values. In particular, the maximum friction force in the asperity contact region accounts for 40.5% of the maximum total friction force at a radial clearance of 5 μm and 77.7% of the maximum total friction of the CB with a surface roughness of 10 μm.

References:

[1] Meng X H, Ning L P, Xie Y B, et al. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt-liner lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(6): 885-898. DOI:10.1177/0954407012464025.
[2] He Z P, Gong W Q, Xie W S, et al. NVH and reliability analyses of the engine with different interaction models between the crankshaft and bearing[J]. Applied Acoustics, 2016, 101: 185-200. DOI:10.1016/j.apacoust.2015.07.014.
[3] Li Y Y, Chen G P, Sun D Y, et al. Dynamic analysis and optimization design of a planar slider-crank mechanism with flexible components and two clearance joints[J]. Mechanism and Machine Theory, 2016, 99: 37-57. DOI:10.1016/j.mechmachtheory.2015.11.018.
[4] Zhao B, Dai X D, Zhang Z N, et al. A new numerical method for piston dynamics and lubrication analysis[J].Tribology International, 2016, 94: 395-408. DOI:10.1016/j.triboint.2015.09.037.
[5] Li Y Y, Chen G P, Sun D Y, et al. Dynamic analysis and optimization design of a planar slider-crank mechanism with flexible components and two clearance joints[J]. Mechanism and Machine Theory, 2016, 99: 37-57. DOI:10.1016/j.mechmachtheory.2015.11.018.
[6] Meng X H, Ning L P, Xie Y B, et al. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt-liner lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(6): 885-898. DOI:10.1177/0954407012464025.
[7] Jiao R Q, Nguyen V, Van Quynh L, et al. Optimal design of micro-dimples on crankpin bearing surface for improving engine’s lubrication and friction[J].Industrial Lubrication and Tribology, 2021, 73(1): 52-59. DOI:10.1108/ilt-04-2020-0152.
[8] Daniel G B, Cavalca K L. Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance[J]. Mechanism and Machine Theory, 2011, 46(10): 1434-1452. DOI:10.1016/j.mechmachtheory.2011.05.007.
[9] Zhao B, Zhang Z N, Fang C C, et al. Modeling and analysis of planar multibody system with mixed lubricated revolute joint[J]. Tribology International, 2016, 98: 229-241. DOI:10.1016/j.triboint.2016.02.024.
[10] Zhang H, Hua M, Dong G N, et al. A mixed lubrication model for studying tribological behaviors of surface texturing[J]. Tribology International, 2016, 93: 583-592. DOI:10.1016/j.triboint.2015.03.027.
[11] Liu J. A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J]. Journal of Sound and Vibration, 2020, 469: 115144. DOI:10.1016/j.jsv.2019.115144.
[12] Zhao B, Zhang Z N, Fang C C, et al. Modeling and analysis of planar multibody system with mixed lubricated revolute joint[J]. Tribology International, 2016, 98: 229-241. DOI:10.1016/j.triboint.2016.02.024.
[13] Gropper D, Wang L, Harvey T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings[J].Tribology International, 2016, 94: 509-529. DOI:10.1016/j.triboint.2015.10.009.
[14] Zhang J J, Zhang J G, Rosenkranz A, et al. Surface textures fabricated by laser surface texturing and diamond cutting—influence of texture depth on friction and wear[J]. Advanced Engineering Materials, 2018, 20(4): 1700995. DOI:10.1002/adem.201700995.
[15] Nguyen V, Wu Z P, Van Quynh L. Optimization of crankpin bearing lubrication under dynamic loading considering effect of micro asperity contact[J].Industrial Lubrication and Tribology, 2020, 72(10): 1173-1179. DOI:10.1108/ilt-02-2020-0072.
[16] Wang P L, Nguyen V, Wu X Y, et al. Research on different structures of dimpled textures on improving the LE-FPL of engine[J].Industrial Lubrication and Tribology, 2021, 73(4): 545-553. DOI:10.1108/ilt-07-2020-0286.
[17] Nguyen V, Zhang J R, Jiao R Q, et al. Research on the effect of crankpin bearing speed and dimension on improving engine power [J]. Journal of Southeast University(English Edition), 2021, 37(2): 119-127. DOI: 10.3969/j.issn.1003-7985.2021.02.001.
[18] Wu Z P, Nguyen V, Zhang Z H, et al. Study on curved surface design of sliding pair based on stepped topography model[J].Industrial Lubrication and Tribology, 2019, 72(1): 86-92. DOI:10.1108/ilt-04-2019-0121.

Memo

Memo:
Biographies: Nguyen Van Liem(1986—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation items: The National Key Research and Development Project(No. 2019YFB2006402), the Open Fund Project of Key Laboratory of Intelligent Conveying Technology and Device, Hubei Polytechnic University.
Citation: Nguyen Van Liem, Zhang Jianrun, Huang Dacheng.Influence of micro asperity contact and radial clearance on the tribological properties of crankpin bearings [J].Journal of Southeast University(English Edition), 2021, 37(3):264-271.DOI:10.3969/j.issn.1003-7985.2021.03.005.
Last Update: 2021-09-20