|Table of Contents|

[1] Wu Jianwei, Sun Beibei, Fu Qidi, et al. Calculation method for trajectory following controlfor autonomous vehicles [J]. Journal of Southeast University (English Edition), 2021, 37 (4): 356-364. [doi:10.3969/j.issn.1003-7985.2021.04.003]
Copy

Calculation method for trajectory following controlfor autonomous vehicles()
无人驾驶路径跟踪控制计算方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 4
Page:
356-364
Research Field:
Traffic and Transportation Engineering
Publishing date:
2021-12-20

Info

Title:
Calculation method for trajectory following controlfor autonomous vehicles
无人驾驶路径跟踪控制计算方法
Author(s):
Wu Jianwei1 2 Sun Beibei1 Fu Qidi1 Liu Yanhao1
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
伍建伟1 2 孙蓓蓓1 傅琪迪1 刘彦豪1
1东南大学机械工程学院, 南京211189; 2桂林电子科技大学机电工程学院, 桂林541004
Keywords:
trajectory following autonomous vehicle feedforward control linear quadratic regulator(LQR)
路径跟踪 无人驾驶 前馈控制 线性二次调节控制器
PACS:
U463.6
DOI:
10.3969/j.issn.1003-7985.2021.04.003
Abstract:
The current literature lacks uniform calculation methods for following trajectory control for autonomous vehicles, including the calculation of errors, determination of tracking points, and design of feedforward controllers. Hence, a complete calculation method is proposed to address this gap. First, a control equation in the form of an error is obtained according to the dynamic equation of the vehicle coordinate system and the trajectory following model. Secondly, the deviation of the vehicle state is obtained according to the current vehicle’s state and the following control model. Finally, a linear quadratic regulator(LQR)controller with feedforward control is designed according to the characteristics of the dynamic equation. With the proposed LQR, the simulation of computational time, anti-interference, and reliability analysis of the trajectory following control is performed by programming using MATLAB. The simulation outcomes are then compared with the experimental results from the literature. The comparison indicates that the proposed complete calculation method is effective, reliable, and capable of achieving real-time and anti-interference following control performance. The simulation results with or without feedforward control show that the steady-state error is eliminated and that good control performance is obtained by introducing feedforward control.
考虑到自动驾驶车辆的轨迹跟踪控制缺乏统一的计算方法, 特别是在误差计算、跟踪点确定和前馈控制器设计等方面, 提出了完整的路径跟踪控制计算方法.首先, 根据车辆坐标系的动力学方程和路径跟踪模型, 得到误差形式的控制方程.然后, 根据车辆当前的状态建立跟踪控制模型来获得车辆状态的偏差.最后, 根据动力学方程的特点, 设计了具有前馈控制的线性二次调节控制器.在此基础上, 采用MATLAB语言开发程序, 给出了仿真实例轨迹跟随控制的计算时间、抗干扰性和可靠性分析的仿真结果.通过与文献实验结果对比, 证明了所提出的计算方法是有效、可靠的, 能够实现实时抗干扰的跟踪控制性能.同时, 通过有无前馈的仿真结果表明, 引入前馈控制能够消除稳态误差, 获得更好的控制性能.

References:

[1] Luo Y G, Xiang Y, Cao K, et al. A dynamic automated lane change maneuver based on vehicle-to-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 87-102. DOI:10.1016/j.trc.2015.11.011.
[2] Li X H, Sun Z P, Cao D P, et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles[J].Mechanical Systems and Signal Processing, 2017, 87: 118-137. DOI:10.1016/j.ymssp.2015.10.021.
[3] Amer N H, Zamzuri H, Hudha K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles: A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2): 225-254. DOI:10.1007/s10846-016-0442-0.
[4] Javid S, Eghtesad M, Khayatian A, et al. Experimental study of dynamic based feedback linearization for trajectory tracking of a four-wheel autonomous ground vehicle[J]. Autonomous Robots, 2005, 19(1): 27-40. DOI:10.1007/s10514-005-0604-6.
[5] Dekker L G, Marshall J A, Larsson J. Experiments in feedback linearized iterative learning-based path following for center-articulated industrial vehicles[J]. Journal of Field Robotics, 2019, 36(5): 955-972. DOI:10.1002/rob.21864.
[6] Taghia J, Wang X, Lam S, et al. A sliding mode controller with a nonlinear disturbance observer for a farm vehicle operating in the presence of wheel slip[J]. Autonomous Robots, 2017, 41(1): 71-88. DOI:10.1007/s10514-015-9530-4.
[7] Hu C, Wang R R, Yan F J. Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 221-230. DOI:10.1109/TTE.2016.2537046.
[8] Xu L H, Wang Y Z, Sun H B, et al. Integrated longitudinal and lateral control for kuafu-Ⅱ autonomous vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2032-2041. DOI:10.1109/TITS.2015.2498170.
[9] Kayacan E, Kayacan E, Ramon H, et al. Towards agrobots: Trajectory control of an autonomous tractor using type-2 fuzzy logic controllers[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 287-298. DOI:10.1109/TMECH.2013.2291874.
[10] Chebly A, Talj R, Charara A. Coupled longitudinal/lateral controllers for autonomous vehicles navigation, with experimental validation[J]. Control Engineering Practice, 2019, 88: 79-96. DOI:10.1016/j.conengprac.2019.05.001.
[11] Han G N, Fu W P, Wang W, et al. The lateral tracking control for the intelligent vehicle based on adaptive PID neural network[J].Sensors(Basel, Switzerland), 2017, 17(6): E1244. DOI:10.3390/s17061244.
[12] Guo J H, Luo Y G, Li K Q. Adaptive coordinated collision avoidance control of autonomous ground vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2018, 232(9): 1120-1133. DOI:10.1177/0959651818774991.
[13] Chen Y M, Lu C, Chu W B. A cooperative driving strategy based on velocity prediction for connected vehicles with robust path-following control[J].IEEE Internet of Things Journal, 2020, 7(5): 3822-3832. DOI:10.1109/JIOT.2020.2969209.
[14] Luan Z K, Zhang J N, Zhao W Z, et al. Trajectory tracking control of autonomous vehicle with random network delay[J].IEEE Transactions on Vehicular Technology, 2020, 69(8): 8140-8150. DOI:10.1109/TVT.2020.2995408.
[15] Yin G D, Li J H, Jin X J, et al. Integration of motion planning and model-predictive-control-based control system for autonomous electric vehicles[J].Transport, 2015, 30(3): 353-360. DOI:10.3846/16484142.2015.1089322.
[16] Yakub F, Mori Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(12): 1695-1714. DOI:10.1177/0954407014566031.
[17] Kayacan E, Ramon H, Saeys W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 806-814. DOI:10.1109/TMECH.2015.2492984.
[18] Ji J, Khajepour A, Melek W W, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952-964. DOI:10.1109/TVT.2016.2555853.
[19] Hu J J, Xiong S S, Zha J L, et al. Lane detection and trajectory tracking control of autonomous vehicle based on model predictive control[J]. International Journal of Automotive Technology, 2020, 21(2): 285-295. DOI:10.1007/s12239-020-0027-6.
[20] Yao T. A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking[J]. Applied Sciences, 2019, 9(22): 4739. DOI:10.3390/app9224739.
[21] Guo J H, Luo Y G, Li K Q. An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2482-2492. DOI:10.1109/TITS.2017.2749416.
[22] Guo J H, Li K Q, Luo Y G. Coordinated control of autonomous four wheel drive electric vehicles for platooning and trajectory tracking using a hierarchical architecture[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(10): 101001. DOI:10.1115/1.4030720.
[23] Sun C Y, Zhang X, Xi L H, et al. Design of a path-tracking steering controller for autonomous vehicles[J].Energies, 2018, 11(6): 1451. DOI:10.3390/en11061451.
[24] Benloucif A, Nguyen A T, Sentouh C, et al. Cooperative trajectory planning for haptic shared control between driver and automation in highway driving[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9846-9857. DOI:10.1109/TIE.2019.2893864.
[25] Nguyen A T, Sentouh C, Popieul J C. Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3819-3830. DOI:10.1109/TIE.2016.2645146.
[26] Werling M, Kammel S, Ziegler J, et al. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds[J]. The International Journal of Robotics Research, 2012, 31(3): 346-359. DOI:10.1177/0278364911423042.

Memo

Memo:
Biographies: Wu Jianwei(1989—), male, Ph. D. candidate; Sun Beibei(corresponding author), female, doctor, professor, bbSun@seu.edu.cn.
Foundation item: The National Key Research and Development Program of China(No. 2019YFB2006404), Guangxi Science and Technology Major Project(No. GUIKE AA18242036, No. GUIKE AA18242037).
Citation: Wu Jianwei, Sun Beibei, Fu Qidi, et al.Calculation method for trajectory following control for autonomous vehicles[J].Journal of Southeast University(English Edition), 2021, 37(4):356-364.DOI:10.3969/j.issn.1003-7985.2021.04.003.
Last Update: 2021-12-20