[1] Luo Y G, Xiang Y, Cao K, et al. A dynamic automated lane change maneuver based on vehicle-to-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 87-102. DOI:10.1016/j.trc.2015.11.011.
[2] Li X H, Sun Z P, Cao D P, et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles[J].Mechanical Systems and Signal Processing, 2017, 87: 118-137. DOI:10.1016/j.ymssp.2015.10.021.
[3] Amer N H, Zamzuri H, Hudha K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles: A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2): 225-254. DOI:10.1007/s10846-016-0442-0.
[4] Javid S, Eghtesad M, Khayatian A, et al. Experimental study of dynamic based feedback linearization for trajectory tracking of a four-wheel autonomous ground vehicle[J]. Autonomous Robots, 2005, 19(1): 27-40. DOI:10.1007/s10514-005-0604-6.
[5] Dekker L G, Marshall J A, Larsson J. Experiments in feedback linearized iterative learning-based path following for center-articulated industrial vehicles[J]. Journal of Field Robotics, 2019, 36(5): 955-972. DOI:10.1002/rob.21864.
[6] Taghia J, Wang X, Lam S, et al. A sliding mode controller with a nonlinear disturbance observer for a farm vehicle operating in the presence of wheel slip[J]. Autonomous Robots, 2017, 41(1): 71-88. DOI:10.1007/s10514-015-9530-4.
[7] Hu C, Wang R R, Yan F J. Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 221-230. DOI:10.1109/TTE.2016.2537046.
[8] Xu L H, Wang Y Z, Sun H B, et al. Integrated longitudinal and lateral control for kuafu-Ⅱ autonomous vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2032-2041. DOI:10.1109/TITS.2015.2498170.
[9] Kayacan E, Kayacan E, Ramon H, et al. Towards agrobots: Trajectory control of an autonomous tractor using type-2 fuzzy logic controllers[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 287-298. DOI:10.1109/TMECH.2013.2291874.
[10] Chebly A, Talj R, Charara A. Coupled longitudinal/lateral controllers for autonomous vehicles navigation, with experimental validation[J]. Control Engineering Practice, 2019, 88: 79-96. DOI:10.1016/j.conengprac.2019.05.001.
[11] Han G N, Fu W P, Wang W, et al. The lateral tracking control for the intelligent vehicle based on adaptive PID neural network[J].Sensors(Basel, Switzerland), 2017, 17(6): E1244. DOI:10.3390/s17061244.
[12] Guo J H, Luo Y G, Li K Q. Adaptive coordinated collision avoidance control of autonomous ground vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2018, 232(9): 1120-1133. DOI:10.1177/0959651818774991.
[13] Chen Y M, Lu C, Chu W B. A cooperative driving strategy based on velocity prediction for connected vehicles with robust path-following control[J].IEEE Internet of Things Journal, 2020, 7(5): 3822-3832. DOI:10.1109/JIOT.2020.2969209.
[14] Luan Z K, Zhang J N, Zhao W Z, et al. Trajectory tracking control of autonomous vehicle with random network delay[J].IEEE Transactions on Vehicular Technology, 2020, 69(8): 8140-8150. DOI:10.1109/TVT.2020.2995408.
[15] Yin G D, Li J H, Jin X J, et al. Integration of motion planning and model-predictive-control-based control system for autonomous electric vehicles[J].Transport, 2015, 30(3): 353-360. DOI:10.3846/16484142.2015.1089322.
[16] Yakub F, Mori Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(12): 1695-1714. DOI:10.1177/0954407014566031.
[17] Kayacan E, Ramon H, Saeys W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 806-814. DOI:10.1109/TMECH.2015.2492984.
[18] Ji J, Khajepour A, Melek W W, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952-964. DOI:10.1109/TVT.2016.2555853.
[19] Hu J J, Xiong S S, Zha J L, et al. Lane detection and trajectory tracking control of autonomous vehicle based on model predictive control[J]. International Journal of Automotive Technology, 2020, 21(2): 285-295. DOI:10.1007/s12239-020-0027-6.
[20] Yao T. A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking[J]. Applied Sciences, 2019, 9(22): 4739. DOI:10.3390/app9224739.
[21] Guo J H, Luo Y G, Li K Q. An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2482-2492. DOI:10.1109/TITS.2017.2749416.
[22] Guo J H, Li K Q, Luo Y G. Coordinated control of autonomous four wheel drive electric vehicles for platooning and trajectory tracking using a hierarchical architecture[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(10): 101001. DOI:10.1115/1.4030720.
[23] Sun C Y, Zhang X, Xi L H, et al. Design of a path-tracking steering controller for autonomous vehicles[J].Energies, 2018, 11(6): 1451. DOI:10.3390/en11061451.
[24] Benloucif A, Nguyen A T, Sentouh C, et al. Cooperative trajectory planning for haptic shared control between driver and automation in highway driving[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9846-9857. DOI:10.1109/TIE.2019.2893864.
[25] Nguyen A T, Sentouh C, Popieul J C. Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3819-3830. DOI:10.1109/TIE.2016.2645146.
[26] Werling M, Kammel S, Ziegler J, et al. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds[J]. The International Journal of Robotics Research, 2012, 31(3): 346-359. DOI:10.1177/0278364911423042.