|Table of Contents|

[1] Lin Pingting, Zhu Yanmei, Zhang Li, et al. Dissociated neural potential for processing strategiesbetween decimals and fractions [J]. Journal of Southeast University (English Edition), 2021, 37 (4): 379-387. [doi:10.3969/j.issn.1003-7985.2021.04.006]
Copy

Dissociated neural potential for processing strategiesbetween decimals and fractions()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 4
Page:
379-387
Research Field:
Computer Science and Engineering
Publishing date:
2021-12-20

Info

Title:
Dissociated neural potential for processing strategiesbetween decimals and fractions
Author(s):
Lin Pingting1 Zhu Yanmei1 2 Zhang Li2 Bai Yi1 Wang Haixian1
1School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
2 School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing 211171, China
Keywords:
decimal fraction exact strategy approximate strategy event-related potential(ERP) P2 N2
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2021.04.006
Abstract:
The entity and symbolic fraction comparison tasks separating identification and semantic access stages based on event-related potential technology were used to investigate neural differences between fraction and decimal strategies in magnitude processing of nonsymbolic entities and symbolic numbers. The experimental results show that continuous entities elicit stronger left-lateralized anterior N2 in decimals, while discretized ones elicit more significant right-lateralized posterior N2 in fractions during the identification stage. On the other hand, decimals elicit stronger N2 over the left-lateralized fronto-central sites while fractions elicit the more profound P2 over the right-lateralized fronto-central sites and N2 at biparietal regions during the semantic access stage. Hence, for nonsymbolic entity processing, alignments of decimals and continuous entities activate the phonological network, while alignments of fractions and discretized entities trigger the visuospatial regions. For symbolic numbers processing, exact strategies with rote arithmetic retrieval in verbal format are used in decimal processing, while approximate strategies with complex magnitude processing in a visuospatial format are used in fraction processing.

References:

[1] Ni Y, Zhou Y D. Teaching and learning fraction and rational numbers: The origins and implications of whole number bias[J]. Educational Psychologist, 2005, 40(1): 27-52. DOI: 10.1207/s15326985ep4001_3.
[2] Dehaene S, Cohen L. Towards an anatomical and functional model of number processing[J]. Mathematical Cognition, 1995, 7(1): 83-120.
[3] Pinel P, Dehaene S, Riviere D, et al. Modulation of parietal activation by semantic distance in a number comparison task[J]. Neuroimage, 2001, 14(5): 1013-26. DOI: 10.1006/nimg.2001.0913.
[4] Rapp M, Bassok M, DeWolf M, et al. Modeling discrete and continuous entities with fractions and decimals[J]. Journal of Experimental Psychology: Applied, 2015, 21(1): 47-56. DOI: 10.1037/xap0000036.
[5] Lee H S, DeWolf M, Bassok M, et al. Conceptual and procedural distinctions between fractions and decimals: A cross-national comparison[J]. Cognition, 2016, 147: 57-69. DOI: 10.1016/j.cognition. 2015.11.005.
[6] Sokolowski H M, Fias W, Mousa A, et al. Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis[J]. Neuroimage, 2017, 146: 376-394. DOI: 10.1016/j. neuroimage.2016.10.028.
[7] Szucs D, Csepe V. The effect of numerical distance and stimulus probability on ERP components elicited by numerical incongruencies in mental addition[J]. Cognitive Brain Research, 2005, 22(2): 289-300. DOI: 10.1016/j.cogbrainres.2004.04.010.
[8] DeWolf M, Grounds M A, Bassok M, et al. Magnitude comparison with different types of rational numbers[J]. Journal of Experimental Psychology: Human Perception and Performance, 2014, 40(1): 71-82. DOI: 10.1037/a0032916.
[9] Cao B, Li F, Li H. Notation-dependent processing of numerical magnitude: Electrophysiological evidence from Chinese numerals[J]. Biological Psychology, 2010, 83(1): 47-55. DOI: 10.1016/j.biopsycho. 2009.10.003.
[10] Jiang T, Qiao S, Li J, et al. Effects of symbol type and numerical distance on the human event-related potential[J]. Neuropsychologia, 2010, 48(1): 201-210. DOI: 10.1016/j.neuropsychologia.2009.09.005.
[11] Luo W, Liu D, He W, et al. Dissociated brain potentials for two calculation strategies[J]. Neuroreport, 2009, 20(4):360-364.DOI:10.1097/WNR.0b013e328323d737.
[12] Zhou X L, Chen C S, Dong Q, et al. Numerical distance effect in the N240 component in a number-matching task[J]. Neuroreport, 2006, 17(10): 991-994. DOI: 10.1097/01.wnr.0000221840.12632.9f.
[13] Zhou X L, Chen C S, Dong Q, et al. Event-related potentials of single-digit addition, subtraction, and multiplication[J]. Neuropsychologia, 2006, 44(12): 2500-2507. DOI: 10.1016/j.neuro psychologia.2006.04.003.
[14] El Yagoubi R, Lemaire P, Besson M. Different brain mechanisms mediate two strategies in arithmetic: Evidence from event-related brain potentials[J]. Neuropsychologia, 2003, 41(7): 855-862. DOI: 10.1016/s0028-3932(02)00180-x.
[15] Stanescu-Cosson R, Pinel P, Van de Moortele P, et al. Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation[J]. Brain, 2000, 123: 2240-2255. DOI: 10.1093/brain/123.11.2240.
[16] Obersteiner A, Tumpek C. Measuring fraction comparison strategies with eye-tracking[J]. ZDM Mathematics Education, 2015, 48(3): 255-266. DOI: 10.1007/s11858-015-0742-z.
[17] Szucs D, Csepe V. Access to numerical information is dependent on the modality of stimulus presentation in mental addition: A combined ERP and behavioral study[J]. Cognitive Brain Research, 2004, 19(1): 10-27. DOI: 10.1016/j.cogbrainres.2003.11.002.
[18] Zhang L, Wang Q, Lin C, et al. An ERP study of the processing of common and decimal fractions: How different they are[J]. PLoS One, 2013, 8(7): e69487. DOI: 10.1371/journal.pone.0069487.
[19] Salillas E, Carreiras M. Core number representations are shaped by language[J]. Cortex, 2014, 52: 1-11. DOI: 10.1016/j.cortex.2013. 12.009.
[20] Arsalidou M, Taylor M J. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations[J]. Neuroimage, 2011, 54(3): 2382-2393. DOI: 10.1016/j.neuroimage.2010.10.009.
[21] DeWolf M, Chiang J N, Bassok M, et al. Neural representations of magnitude for natural and rational numbers[J]. Neuroimage, 2016, 141: 304-312. DOI: 10.1016/j.neuroimage.2016.07.052.
[22] DeWolf M, Bassok M, Holyoak K J. Conceptual structure and the procedural affordances of rational numbers: Relational reasoning with fractions and decimals[J]. Journal of Experimental Psychology: General, 2015, 144(1): 127-150. DOI: 10.1037/xge0000034.
[23] Van Beek L, Ghesquier P, De Smedt B, et al. The arithmetic problem size effect in children: An event-related potential study[J]. Frontiers in Human Neuroscience, 2014, 8: 756. DOI: 10.3389/fnhum.2014.00756.
[24] Qiu K, Wang Y. Conceptual distinctions and preferential alignment across rational number representations[J]. European Journal of Psychology of Education, 2020, 36:865-881. DOI: 10.1007/s10212-020-00502-4.
[25] Hurst M, Cordes S. Working memory strategies during rational number magnitude processing[J]. Journal of Educational Psychology, 2017, 109(5): 694-708. DOI: 10.1037/edu0000169.
[26] Luck S J. Multiple mechanisms of visual-spatial attention: Recent evidence from human electrophysiology[J]. Behavioural Brain Research, 1995, 71: 113-123. DOI: 10.1016/0166-4328(95)00041-0.
[27] Benavides-Varela S, Basso Moro S, Brigadoi S, et al. N2pc reflects two modes for coding the number of visual targets[J]. Psychophysiology, 2018, 55(11): e13219. DOI: 10.1111/psyp.13219.
[28] De Smedt B, Holloway I D, Ansari D. Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency[J]. Neuroimage, 2011, 57(3): 771-781. DOI: 10.1016/j.neuroimage.2010.12.037.
[29] Temple E, Posner M I. Brain mechanisms of quantity are similar in 5-year-old children and adults[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 7836-7841. DOI: 10.1073/pnas.95.13.7836.
[30] Chen M, Wang Q, Zhang L. An ERP study on the processing of common and decimal fractions affected by contexts[J]. Psychological Research, 2013, 6(3): 29-38. DOI:CNKI:SUN:OXLY.0.2013-03-006. (in Chinese)
[31] Zhang L, Xin Z, Li F, et al. An ERP study on the processing of common fractions[J]. Experimental Brain Research, 2012, 217(1): 25-34. DOI: 10.1007/s00221-011-2969-4.
[32] Plummer P, DeWolf M, Bassok M, et al. Reasoning strategies with rational numbers revealed by eye tracking[J]. Attention, Perception, & Psychophysics, 2017, 79(5): 1426-1437. DOI: 10.3758/s13414-017-1312-y.
[33] Schmithorst V J, Brown R D. Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions[J]. Neuroimage, 2004, 22(3): 1414-1420. DOI: 10.1016/j.neuroimage.2004.03.021.

Memo

Memo:
Biographies: Lin Pingting(1989—), female, Ph. D. candidate; Zhu Yanmei(corresponding author), female, doctor, lecturer, zhuyanmei@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 62077013, 61773114), the Jiangsu Provincial Innovation Project for Scientific Research of Graduate Students in Universities(No. KYCX17_0160).
Citation: Lin Pingting, Zhu Yanmei, Zhang Li, et al. Dissociated neural potential for processing strategies between decimals and fractions[J].Journal of Southeast University(English Edition), 2021, 37(4):379-387.DOI:10.3969/j.issn.1003-7985.2021.04.006.
Last Update: 2021-12-20