[1] Yin Y, Li S, Han Q H, et al. Material parameters in void growth model for G20Mn5QT cast steel at low temperatures[J]. Construction and Building Materials, 2020, 243:1-15. DOI: 10.1016/j.conbuildmat.2020.118123.
[2] Blair M, Monroe R, Beckermann C, et al. Predicting the occurrence and effects of defects in castings[J]. The Journal of The Minerals, 2005, 57(5):29-34. DOI: 10.1007/s11837-005-0092-3.
[3] Zhao C F, Li Z X. Influence of geometrical features of meso-defects on damage evolution of metal structure[J]. Applied Mechanics and Materials, 2015, 723:21-25. DOI: 10.4028/www.scientific.net/AMM.723.21.
[4] Springmann M, Kuna M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques[J]. Computational Materials Science, 2005, 32(3/4):544-552. DOI: 10.1016/j.commatsci.2004.09.010.
[5] Gurson A L. Porous rigid-plastic materials containing rigid inclusions-yield function, plastic potential, and void nucleation[J]. Physical Metallurgy of Fracture, 1978(5): 357-364. DOI: 10.1016/B978-0-08-022138-0.50058-7.
[6] Tvergaard V. Influence of voids on shear band instabilities under plane-strain conditions[J]. International Journal of Fracture, 1981, 17(4): 389-407. DOI: 10.1007/BF00036191.
[7] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490. DOI: 10.1016/0022-5096(84)90031-0.
[8] Roux E, Bernacki M, Bouchard P O. A level-set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain[J]. Computational Materials Science, 2013, 68:32-46. DOI: 10.1016/j.commatsci.2012.10.004.
[9] Xu Y D, Qian C X. Application of Gurson-Tvergaard-Needleman constitutive model to the tensile behavior of reinforcing bars with corrosion pits[J]. Plos One, 2017, 8(1): 1-7. DOI: 10.1371/journal.pone.0054368.
[10] Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model[J]. Journal of Iron and Steel Research International, 2019, 26:941-952. DOI: 10.1007/s42243-018-0202-4.
[11] Steglich D, Wafai H, Besson J. Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal[J]. Engineering Fracture Mechanics, 2010, 77(17):3501-3518. DOI: 10.1016/j.engfracmech.2010.08.021.
[12] Li G, Cui S S. A review on theory and application of plastic meso-damage mechanics[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 1-12. DOI: 10.1016/j.tafmec.2020.102686.
[13] Zhang Z L, Thaulow C, D8;degE5;rd J. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2):155-168. DOI: 10.1016/S0013-7944(00)00055-2.
[14] Chu C C, Needleman A. Void Nucleation effects in biaxially stretched sheets[J]. Journal of Engineering Materials and Technology, 1980, 102(3): 249-256. DOI: 10.1115/1.3224807.
[15] Acharyya S, Dhar S. A complete GTN model for prediction of ductile failure of pipe[J]. Journal of Materials Science, 2008, 43(6):1897-1909. DOI: 10.1007/s10853-007-2369-0.
[16] Zhou J, Gao X, Sobotka J C, et al. On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions[J]. International Journal of Solids and Structures, 2014, 51(18):3273-3291. DOI: 10.1016/j.ijsolstr.2014.05.028.
[17] Kami A, Dariani B M, Vanini A S, et al. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model[J]. Journal of Materials Processing Technology, 2014, 216:472-483. DOI: 10.1016/j.jmatprotec.2014.10.017.
[18] Zhao P J, Chen Z H, Dong C F. Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process[J]. Journal of Materials Processing Tech, 2016, 236:16-25. DOI: 10.1016/j.jmatprotec.2016.05.002.
[19] Jiang W, Li Y Z, Su J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics A/solids, 2016, 57:132-148. DOI: 10.1016/j.euromechsol.2015.12.009.
[20] Gholipour H, Biglari F R, Nikbin K. Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests[J]. International Journal of Mechanical Sciences, 2019, 164:1-15. DOI: 10.1016/j.ijmecsci.2019.105170.
[21] Yan H D, Jin H, Yao R G. Prediction of the damage and fracture of cast steel containing pores[J]. International Journal of Damage Mechanics, 2020, 29(1):1-18. DOI: 10.1177/1056789519872000.
[22] Yan H D, Tang Q, Jin H. Damage evolution analysis on cast steel joints with porosity defects[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(5):904-910. DOI:10.3969/j.issn.1001-0505.2019.05.013. (in Chinese)
[23] Yan H D, Jin H. Damage evolution analysis of cast steel GS-20Mn5V based on modified GTN model[J]. Journal of Southeast University(English Edition), 2018, 34(3):364-370.
[24] Ministry of Housing and Urban-rural Development of the People’s Republic of China. Technical specification for cast steel structure: JGJ/T 395—2017[S]. Beijing: China Construction Industry Press, 2017.(in Chinese)
[25] Luo L S, Wen H G, Duan X N. Research on bearing capacity of circular steel tubular KX-joint[J]. Steel Structure, 2018, 33(2):56-59, 109.(in Chinese)