|Table of Contents|

[1] Chen Wenwu, Shao Xinxing, He Xiaoyuan,. Data compression of displacement fields in digital imagecorrelation by non-integer quantization [J]. Journal of Southeast University (English Edition), 2022, 38 (1): 42-48. [doi:10.3969/j.issn.1003-7985.2022.01.007]
Copy

Data compression of displacement fields in digital imagecorrelation by non-integer quantization()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 1
Page:
42-48
Research Field:
Image Processing
Publishing date:
2022-03-20

Info

Title:
Data compression of displacement fields in digital imagecorrelation by non-integer quantization
Author(s):
Chen Wenwu Shao Xinxing He Xiaoyuan
School of Civil Engineering, Southeast University, Nanjing 211189, China
Keywords:
digital image correlation wireless transmission displacement field compression encoding
PACS:
TP751.1
DOI:
10.3969/j.issn.1003-7985.2022.01.007
Abstract:
To solve the real-time transmission problem of displacement fields in digital image correlation, two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are proposed. Based on the Joint Photographic Experts Group(JPEG)and JPEG 2000 standards, new non-integer and integer quantizations are proposed in the quantization procedure of compression algorithms. Displacement fields from real experiments were used to evaluate the compression ratio and computational time of the algorithm. The results show that the compression ratios of the DCT-based algorithm are mostly below 10%, which are much less than that of the DWT-based algorithm, and the computational speed is also significantly higher than that of the latter. These findings prove the algorithm’s effectiveness in real-time displacement field wireless transmission.

References:

[1] Pan B, Qian K M, Xie H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review [J]. Measurement Science and Technology, 2009, 20(6): 1-17. DOI: 10.1088/0957-0233/20/6/062001.
[2] Wan T Y, Qian K M, Seah H S, et al. A flexible heterogeneous real-time digital image correlation system [J]. Optics and Lasers in Engineering, 2018, 110: 7-17. DOI: 10.1016/j.optlaseng.2018.05.010.
[3] Shao X X, Dai X J, Chen Z N, et al. Real-time 3D digital image correlation method and its application in human pulse monitoring [J]. Applied Optics, 2016, 55(4): 696-704. DOI: 10.1364/ao.55.000696.
[4] Xue Y, Cheng T, Xu X H, et al. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation [J]. Optics and Lasers in Engineering, 2017, 88: 82-90. DOI: 10.1016/j.optlaseng.2016.07.002.
[5] Wu R, Kong C, Li K, et al. Real-time digital image correlation for dynamic strain measurement [J]. Experimental Mechanics, 2016, 56(5): 833-843. DOI: 10.1007/s11340-016-0133-6.
[6] Huang J W, Zhang L Q, Jiang Z Y, et al. Heterogeneous parallel computing accelerated iterative subpixel digital image correlation [J]. Science China—Technological Sciences, 2018, 61(1): 74-85. DOI: 10.1007/s11431-017-9168-0.
[7] Isenburg M, Lindstrom P, Snoeyink J. Lossless compression of predicted floating-point geometry [J]. Computer-Aided Design, 2005, 37(8): 869-877. DOI: 10.1016/j.cad.2004.09.015.
[8] Lü S, Da F P, Huang Y. A fast and lossy compression algorithm for point-cloud models based on data type conversion [J]. Journal of Graphics, 2016, 37(2): 199-205. DOI:10.11996/JG.j.2095-302X.2016020199. (in Chinese)
[9] Hou Z L, Su X Y, Zhang Q C. Virtual structured-light coding for three-dimensional shape data compression [J]. Optics and Lasers in Engineering, 2012, 50(6): 844-849. DOI: 10.1016/j.optlaseng.2012.01.012.
[10] Karpinsky N, Zhang S. Composite phase-shifting algorithm for three-dimensional shape compression [J]. Optical Engineering, 2010, 49(6): 1-6. DOI: 10.1117/1.3456632.
[11] Zhang S. Three-dimensional range data compression using computer graphics rendering pipeline [J]. Applied Optics, 2012, 51(18): 4058-4064. DOI: 10.1364/ao.51.004058.
[12] Gu X F, Zhang S, Huang P S, et al. Holoimages [C]// Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling. Cardiff, UK, 2006: 129–138. DOI: 10.1145/1128888.1128906.
[13] Bell T, Vlahov B, Allebach J P, et al. Three-dimensional range geometry compression via phase encoding [J]. Applied Optics, 2017, 56(33): 9285-9292. DOI: 10.1364/AO.56.009285.
[14] Chen X, Zhang S. Three dimensional range geometry and texture data compression with space-filling curves [J]. Optics Express, 2017, 25(21): 26103-26117. DOI: 10.1364/OE.25.026103.
[15] Bell T, Zhang S. Multiwavelength depth encoding method for 3D range geometry compression [J]. Applied Optics, 2015, 54(36): 10684-10691. DOI: 10.1364/AO.54.010684.
[16] Wallace G K. The JPEG still picture compression standard [J]. Communications of the ACM, 1991, 34(4): 30-44. DOI: 10.1145/103085.103089.
[17] Christopoulos C, Skodras A, Ebrahimi T. The JPEG 2000 still image coding system: An overview [J]. IEEE Transactions on Consumer Electronics, 2000, 46(4): 1103-1127. DOI: 10.1109/30.920468.
[18] Taubman D S, Marcellin M W. JPEG 2000: Image compression fundamentals, standards and practice[M]. Amsterdam, the Netherlands: Kluwer Academic Publishers, 2001: 87-142. DOI: 10.1007/978-1-4615-0799-4.
[19] Rabbani M, Joshi R. An overview of the JPEG 2000 still image compression standard [J]. Signal Processing: Image Communication, 2002, 17(1): 3-48. DOI: 10.1016/s0923-5965(01)00024-8.
[20] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform [J]. IEEE Transactions on Computers, 1974, 23(1): 90-93. DOI: 10.1109/T-C.1974.223784.
[21] Chen W H, Smith C H, Fralick S C. A fast computational algorithm for the discrete cosine transform [J]. IEEE Transactions on Communications, 1977, 25(9): 1004-1009. DOI: 10.1109/TCOM.1977.1093941.
[22] Lam E Y, Goodman J W. A mathematical analysis of the DCT coefficient distributions for images [J]. IEEE Transactions on Image Processing, 2000, 9(10): 1661-1666. DOI: 10.1109/83.869177.
[23] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. Journal of Fourier Analysis and Applications, 1998, 4(3): 247-269. DOI: 10.1007/bf02476026.
[24] Rioul O, Vetterli M. Wavelets and signal processing [J]. IEEE Signal Processing Magazine, 1991, 8(4): 14-38. DOI: 10.1109/79.91217.
[25] Shensa M J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms [J]. IEEE Transactions on Signal Processing, 1992, 40(10): 2464-2482. DOI: 10.1109/78.157290.
[26] Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets [J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200. DOI: 10.1006/acha.1996.0015.
[27] Sullivan G J, Ohm J-R, Han W-J, et al. Overview of the high efficiency video coding(HEVC)standard [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649-1668. DOI: 10.1109/TCSVT.2012.2221191.
[28] Xu X Z, Liu S. Recent advances in video coding beyond the HEVC standard [J]. APSIPA Transactions on Signal and Information Processing, 2019, 8: 1-10. DOI: 10.1017/atsip.2019.11.
[29] Yang J, Bhattacharya K. Combining image compression with digital image correlation [J]. Experimental Mechanics, 2019, 59(5): 629-642. DOI: 10.1007/s11340-018-00459-y.
[30] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard [J]. IEEE Signal Processing Magazine, 2001, 18(5): 36-58. DOI: 10.1109/79.952804.

Memo

Memo:
Biographies: Chen Wenwu(1996—), male, graduate; Shao Xinxing(corresponding author), male, doctor, lecturer, Xinxing.shao@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.11827801, 11902074).
Citation: Chen Wenwu, Shao Xinxing, He Xiaoyuan.Data compression of displacement fields in digital image correlation by non-integer quantization[J].Journal of Southeast University(English Edition), 2022, 38(1):42-48.DOI:10.3969/j.issn.1003-7985.2022.01.007.
Last Update: 2022-03-20