[1] Arnal C1; J, Díaz-Ramírez M, Acevedo L, et al. Multicriteria analysis for retrofitting of natural gas melting and heating furnaces for sustainable manufacturing and industry 4.0[J]. Journal of Energy Resources Technology, 2020, 142(2): 022203. DOI:10.1115/1.4044769.
[2] Perna A, Minutillo M, Jannelli E, et al. Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier[J]. Applied Energy, 2018, 227: 80-91. DOI:10.1016/j.apenergy.2017.08.077.
[3] Lee M C, Seo S B, Chung J H, et al. Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas[J]. Fuel, 2010, 89(7): 1485-1491. DOI:10.1016/j.fuel.2009.10.004.
[4] Lee U, Balu E, Chung J N. An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications[J]. Applied Energy, 2013, 101: 699-708. DOI:10.1016/j.apenergy.2012.07.036.
[5] Voloshchuk Y, Vascellari M, Hasse C, et al. Numerical study of natural gas reforming by non-catalytic partial oxidation based on the Virtuhcon Benchmark[J]. Chemical Engineering Journal, 2017, 327: 307-319. DOI:10.1016/j.cej.2017.06.061.
[6] Baina F, Malmquist A, Alejo L, et al. Extended operability of a commercial air-staged burner using a synthetic mixture of biomass derived gas for application in an externally fired micro gas turbine[J]. Fuel, 2015, 150: 664-671. DOI:10.1016/j.fuel.2015.02.048.
[7] Park J, Lee M C. Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially-premixed gas turbine combustor: Part Ⅰ—Frequency and mode analysis[J]. International Journal of Hydrogen Energy, 2016, 41(18): 7484-7493. DOI:10.1016/j.ijhydene.2016.02.047.
[8] Chiesa P, Lozza G, Mazzocchi L. Using hydrogen as gas turbine fuel[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 73-80. DOI:10.1115/1.1787513.
[9] Ren J Y, Qin W, Egolfopoulos F N, et al. Strain-rate effects on hydrogen-enhanced lean premixed combustion[J]. Combustion and Flame, 2001, 124(4): 717-720. DOI:10.1016/S0010-2180(00)00205-4.
[10] Schefer R W, Wicksall D M, Agrawal A K. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner[J]. Proceedings of the Combustion Institute, 2002, 29(1): 843-851. DOI:10.1016/S1540-7489(02)80108-0.
[11] Cellek M S, P131;narba瘙塂131; A. Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels[J]. International Journal of Hydrogen Energy, 2018, 43(2): 1194-1207. DOI:10.1016/j.ijhydene.2017.05.107.
[12] Rahnama P, Paykani A, Reitz R D. A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine[J]. Applied Energy, 2017, 193: 182-198. DOI:10.1016/j.apenergy.2017.02.023.
[13] Gómez H O, Calleja M C, Fernández L A, et al. Application of the CFD simulation to the evaluation of natural gas replacement by syngas in burners of the ceramic sector[J]. Energy, 2019, 185: 15-27. DOI:10.1016/j.energy.2019.06.064.
[14] Karyeyen S, Feser J S, Jahoda E, et al. Development of distributed combustion index from a swirl-assisted burner[J]. Applied Energy, 2020, 268: 114967. DOI:10.1016/j.apenergy.2020.114967.
[15] Palacios A, Bradley D. Conversion of natural gas jet flame burners to hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17051-17059. DOI:10.1016/j.ijhydene.2021.02.144.
[16] Scharler R, Gruber T, EhrenhF6;fer A, et al. Transient CFD simulation of wood log combustion in stoves[J]. Renewable Energy, 2020, 145: 651-662. DOI:10.1016/j.renene.2019.06.053.
[17] Orsino S, Weber R, Bollettini U. Numerical simulation of combustion of natural gas with high-temperature air[J]. Combustion Science and Technology, 2001, 170(1): 1-34. DOI:10.1080/00102200108907848.
[18] Y131;lmaz(·overI), Ta瘙塂tan M, (·overI)lba瘙塂 M, et al. Effect of turbulence and radiation models on combustion characteristics in propane-hydrogen diffusion flames[J]. Energy Conversion and Management, 2013, 72: 179-186. DOI:10.1016/j.enconman.2012.07.031.
[19] Westbrook C K, Dryer F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology, 1981, 27(1/2): 31-43. DOI:10.1080/00102208108946970.
[20] Okafor E C, Somarathne K D A, Ratthanan R, et al. Control of NOX and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia[J]. Combustion and Flame, 2020, 211: 406-416. DOI:10.1016/j.combustflame.2019.10.012.
[21] Kiedrzyńska A, Lewtak R, Swiatkowski B, et al. Numerical study of natural gas and low-calorific syngas co-firing in a pilot scale burner[J]. Energy, 2020, 211: 118552. DOI:10.1016/j.energy.2020.118552.