|Table of Contents|

[1] Wang Xiaopeng, Zhao Jun, Wang Bohui, Li Baomin, et al. Predictive current control system of PMSM based on LADRC [J]. Journal of Southeast University (English Edition), 2022, 38 (3): 227-234. [doi:10.3969/j.issn.1003-7985.2022.03.003]
Copy

Predictive current control system of PMSM based on LADRC()
基于LADRC的永磁同步电机预测电流控制系统
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 3
Page:
227-234
Research Field:
Electrical Engineering
Publishing date:
2022-09-20

Info

Title:
Predictive current control system of PMSM based on LADRC
基于LADRC的永磁同步电机预测电流控制系统
Author(s):
Wang Xiaopeng Zhao Jun Wang Bohui Li Baomin
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
王小鹏 赵军 王博辉 李宝民
兰州交通大学电子与信息工程学院, 兰州 730070
Keywords:
permanent magnet synchronous motor(PMSM) two-vector model predictive current control linear active disturbance rejection control speed control system
永磁同步电机 双矢量模型预测电流控制 线性自抗扰控制 调速系统
PACS:
TM341
DOI:
10.3969/j.issn.1003-7985.2022.03.003
Abstract:
For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system, when the speed loop adopts proportional-integral(PI)control, speed regulation is easily affected by motor parameters, resulting in the inability to balance the system robustness and dynamic performance. A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed. Firstly, a mathematical model of a PMSM is presented, and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system. Secondly, a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure. Finally, the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller. The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods. The system has a fast motor speed response, small overshoot, strong anti-interference, and no steady-state error, and the total harmonic distortion is reduced.
针对永磁同步电机(PMSM)模型预测电流控制(MPCC)系统中速度环采用PI控制时, 系统调速效果容易受电机参数影响而无法兼顾鲁棒性和动态性能的问题, 提出了一种线性自抗扰控制(LADRC)与双矢量模型预测电流控制(TV-MPCC)相结合的PMSM最优控制策略.首先给出了PMSM的数学模型, 并在同步旋转坐标系下搭建PMSM TV-MPCC模型;然后设计了一种由线性扩张状态观测器(LESO)和线性状态误差反馈(LSEF)构成的一阶LADRC控制器, 在线性简化传统ADRC结构的同时降低参数整定的复杂度;最后利用设计的LADRC控制器替代电机调速系统中传统的PI速度调节器.仿真结果表明, 采用LADRC的调速系统能够较有效地适应电机参数变化, 相比PI控制及同类方法具有更好的鲁棒性和动态性能, 电机转速响应速度快, 超调量小, 抗扰能力强且无稳态误差, 电流总谐波失真减小.

References:

[1] Kang K, Song J, Kang C, et al. Real-time detection of the dynamic eccentricity in permanent-magnet synchronous motors by monitoring speed and back EMF induced in an additional winding[J].IEEE Transactions on Industrial Electronics, 2017, 64(9): 7191-7200. DOI:10.1109/TIE.2017.2686376.
[2] Hussain S, Bazaz M A. Comparative analysis of speed control strategies for vector controlled PMSM drive[C]//2016 International Conference on Computing, Communication and Automation(ICCCA). Greater Noida, India, 2016: 1314-1319. DOI:10.1109/CCAA.2016.7813950.
[3] Teng Q F, Luo W D. Model predictive torque control for PMSM systems fed by three level inverter based on compound control strategy[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 173-182.(in Chinese)
[4] Lan Z Y, Wang B, Xu C, et al. A novel three-vector model predictive current control for permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2018, 38(S1): 243-249. DOI:10.13334/j.0258-8013.pcsee.181100. (in Chinese)
[5] Niu F, Han Z D, Huang X Y, et al. Model predictive flux control for permanent magnet synchronous motor[J]. Electric Machines and Control, 2019, 23(3): 34-41. DOI:10.15938/j.emc.2019.03.005. (in Chinese)
[6] Zhang B, Yang L B, Liu X, et al. Model predictive torque control of PMSM system driven by three phase eight switch fault-tolerant inverter[J]. Acta Energiae Solaris Sinica, 2019, 40(4):1076-1084.(in Chinese)
[7] Xu Y P, Zhang B C, Zhou Q. Two-vector based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 222-230. DOI:10.19595/j.cnki.1000-6753.tces.160308. (in Chinese)
[8] Park S Y, Kwak S. Comparative study of three model predictive current control methods with two vectors for three-phase DC/AC VSIs[J]. IET Electric Power Applications, 2017, 11(7): 1284-1297. DOI:10.1049/iet-epa.2016.0687.
[9] Tu Z, Zhao Y, Yu J J, et al. Two-vector-based model predictive current control of permanent magnet synchronous motor[J]. Engineering Journal of Wuhan University, 2020, 53(8):721-727. DOI:10.14188/j.1671-8844. 2020-08-010. (in Chinese)
[10] Han J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18. DOI:10.14107/j.cnki.kzgc.2002.03.003. (in Chinese)
[11] Zhou K, Sun Y C, Wang X D, et al. Active disturbance rejection control of PMSM speed control system[J]. Electric Machines and Control, 2018, 22(2): 57-63. DOI:10.15938/j.emc.2018.02.008. (in Chinese)
[12] Hezzi A, Ben Elghali S, Bensalem Y, et al. ADRC-based robust and resilient control of a 5-phase PMSM driven electric vehicle[J]. Machines, 2020, 8(2): 17. DOI:10.3390/machines8020017.
[13] Zhang B, Wen X, Li K Q. Active disturbance rejection control FCS-MPC strategy based on ESO of PMSM system[J]. Journal of Measurement Science and Instrumentation, 2018, 9(2): 140-147. DOI:10.3969/j.issn.1674-8042.2018.02.007.
[14] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Denver, CO, USA, 2003: 4989-4996. DOI:10.1109/ACC.2003.1242516.
[15] Barva A V, Bhavsar P R. Design and simulation of four-leg based three-phase four-wire shunt active power filter[C]//2018 International Conference on Communication information and Computing Technology(ICCICT). Mumbai, India, 2018: 1-6. DOI:10.1109/ICCICT.2018.8325868.
[16] Ahi B, Haeri M. Linear active disturbance rejection control from the practical aspects[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2909-2919. DOI:10.1109/TMECH.2018.2871880.
[17] Zhang H, Wang Y Y, Zhang G W, et al. Research on LADRC strategy of PMSM for road-sensing simulation based on differential evolution algorithm[J]. Journal of Power Electronics, 2020, 20(4): 958-970. DOI:10.1007/s43236-020-00090-y.
[18] Cao Z C, Chu Y B. Active disturbance rejection vector control system for PMSMs[J]. Engineering Journal of Wuhan University, 2020, 53(1):67-71. DOI:10.14188/j.1671-8844. 2020-01-011. (in Chinese)

Memo

Memo:
Biography: Wang Xiaopeng(1969—), male, doctor, professor, wangxiaopeng@mail.lzjtu.cn.
Foundation item: Gansu Province Key R&D Program(No.20YF8GA036).
Citation: Wang Xiaopeng, Zhao Jun, Wang Bohui, et al.Predictive current control system of PMSM based on LADRC[J].Journal of Southeast University(English Edition), 2022, 38(3):227-234.DOI:10.3969/j.issn.1003-7985.2022.03.003.
Last Update: 2022-09-20