[1] Chang X Y, Wang, H, Zhang Y M, et al. Bayesian prediction of tunnel convergence combining empirical model and relevance vector machine[J].Measurement, 2022, 188:110621. DOI: 10.1016/j.measurement.2021.110621.
[2] Fakhimi A, Salehi D, Mojtabai N. Numerical back analysis for estimation of soil parameters in the Resalat Tunnel project[J].Tunnelling and Underground Space Technology, 2004, 19(1): 57-67. DOI:10.1016/s0886-7798(03)00087-7.
[3] Gao W, Ge M M. Back analysis of rock mass parameters and initial stress for the Longtan tunnel in China[J].Engineering with Computers, 2016, 32(3): 497-515. DOI:10.1007/s00366-015-0428-8.
[4] Sun P M, Bao T F, Gu C S, et al. Parameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithm[J]. Science China Technological Sciences, 2016, 59(9): 1442-1451. DOI:10.1007/s11431-016-0213-y.
[5] Nikakhtar L, Zare S, Nasirabad H M, et al. Application of ANN-PSO algorithm based on FDM numerical modelling for back analysis of EPB TBM tunneling parameters[J]. European Journal of Environmental and Civil Engineering, 2020, 26(8): 3169-3186. DOI:10.1080/19648189.2020.1795725.
[6] Sun J L, Wang F, Wang X L, et al. A quantitative evaluation method based on back analysis and the double-strength reduction optimization method for tunnel stability[J].Advances in Civil Engineering, 2021, 2021:8899685. DOI:10.1155/2021/8899685.
[7] Gao W, Chen D L, Dai S, et al. Back analysis for mechanical parameters of surrounding rock for underground roadways based on new neural network[J]. Engineering with Computers, 2017, 34(1): 25-36. DOI:10.1007/s00366-017-0518-x.
[8] Wu Y K, Yuan H N, Zhang B Y, et al. Displacement-based back-analysis of the model parameters of the Nuozhadu High Earth-Rockfill Dam[J]. Scientific World Journal, 2014. DOI:10.1155/2014/292450.
[9] Gao W. Inverse back analysis based on evolutionary neural networks for underground engineering[J]. Neural Processing Letters, 2016, 44(1): 81-101. DOI:10.1007/s11063-016-9498-x.
[10] Xu S, An X, Qiao X D, et al. Multi-task least-squares support vector machines[J].Multimedia Tools and Applications, 2013, 71(2): 699-715. DOI:10.1007/s11042-013-1526-5.
[11] Li Z Z, Wang H, Chang X Y, et al. Prediction of surrounding rock convergence deformation of high speed railway tunnel based on combined model[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(05): 851-858. DOI: 10.3969/j.issn.1001-0505.2021.05.017.(in chinese)
[12] Torabi-Kaveh M, Sarshari B. Predicting convergence rate of Namaklan twin tunnels using machine learning methods[J].Arabian Journal for Science and Engineering, 2020, 45(5): 3761-3780. DOI:10.1007/s13369-019-04239-1.
[13] Zhu X Q, Gao Z H. An efficient gradient-based model selection algorithm for multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2018, 111: 16-22. DOI: 10.1016/j.patrec.2018.01.023.
[14] Luo Y B, Chen J X, Chen Y, et al. Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method[J]. Tunnelling and Underground Space Technology, 2018, 71: 478-493. DOI: 10.1016/j.tust.2017.10.003.
[15] Kolivand F, Rahmannejad R. Estimation of geotechnical parameters using Taguchi’s design of experiment(DOE)and back analysis methods based on field measurement data[J]. Bulletin of Engineering Geology and the Environment, 2017, 77(4): 1763-1779. DOI:10.1007/s10064-017-1042-3.
[16] Zhuang D Y, Ma K, Tang C A, et al. Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm[J].Tunnelling and Underground Space Technology, 2019, 83:425-436. DOI: 10.1016/j.tust.2018.09.027.
[17] Wang H, Chang X Y, Zhang Y M, et al. Inversion analysis of mechanical parameters of surrounding rock in high-speed railway tunnel[J].Journal of Railway Engineering Society, 2020, 37: 47-53. DOI:10.3969/j.issn.1006-2106.2020.09.009. (in Chinese)
[18] Fei J B, Wu Z Z, Sun X H, et al. Research on tunnel engineering monitoring technology based on BPNN neural network and MARS machine learning regression algorithm[J].Neural Computing & Applications, 2021, 33(1): 239-255. DOI:10.1007/s00521-020-04988-3.
[19] Khatib T, Mohamed A, Sopian K, et al. Assessment of artificial neural networks for hourly solar radiation prediction[J].International Journal of Photoenergy, 2012, 2012:946890. DOI:10.1155/2012/946890.