[1] Dharia A, Adeli H. Neural network model for rapid forecasting of freeway link travel time[J]. Engineering Applications of Artificial Intelligence, 2003, 16(7/8): 607-613. DOI: 10.1016/j.engappai.2003.09.011.
[2] Liu Z, He J, Zhang C, et al. Optimal off-ramp terminal locating strategy based on traffic safety and efficiency[J]. Transportation Letters: The International Journal of Transportation Research, 2020(5): 1-12. DOI: 10.1080/19427867.2020.1839717.
[3] Jin S, Wang D H, Wang L M. Traffic control strategy for a surface street on an expressway-arterial corridor[J]. Tsinghua Science & Technology, 2009(6): 776-781. DOI: 10.1016/S1007-0214(09)70148-8.
[4] MuF1;oz J C, Daganzo C F. The bottleneck mechanism of a freeway diverge[J]. Transportation Research Part A: Policy & Practice, 2002, 36(6): 483-505. DOI: 10.1016/S0965-8564(01)00017-9.
[5] Rudjanakanoknad J. Capacity change mechanism of a diverge bottleneck[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2278(1): 21-30. DOI: 10.3141/2278-03.
[6] Spiliopoulou A, Kontorinaki M, Papageorgiou M, et al. Macroscopic traffic flow model validation at congested freeway off-ramp areas[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 18-29. DOI: 10.1016/j.trc.2014.01.009.
[7] Zhang L, Wang S, Chen C, et al. Modeling lane-change risk in urban expressway off-ramp area based on naturalistic driving data[J]. Journal of Testing and Evaluation, 2020, 48(3): 20190269. DOI: 10.1520/JTE20190269.
[8] Guenther G, Coeymans J E, Munoz J C, et al. Mitigating freeway off-ramp congestion: A surface streets coordinated approach[J]. Procedia-Social and Behavioral Sciences, 2012, 17(1): 27-43. DOI: 10.1016/j.sbspro.2011.04.506.
[9] Yang X F, Cheng Y, Chang G L. Integration of adaptive signal control and freeway off-ramp priority control for commuting corridors[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 328-345. DOI: 10.1016/j.trc.2017.11.019.
[10] Messer C. Simulation studies of traffic operations at oversaturated, closely spaced signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 1998, 1646: 115-123. DOI: 10.3141/1646-14.
[11] Lim K S, Kim J H, Shin E K. Development of off-ramp control model through signal optimization[J]. Journal of the Korean Society of Civil Engineers, 2007, 27(4D): 379-388.
[12] Chen X, Qi Y, Li D, et al. Dual right-turn lanes in mitigating weaving conflicts at frontage road intersections in proximity to off-ramps[J]. Transportation Planning & Technology, 2014, 37(3):307-319. DOI: 10.1080/03081060.2014.897126.
[13] Zhao J, Liu Y. Integrated signal optimization and non-traditional lane assignment for urban freeway off-ramp congestion mitigation[J]. Transportation Research Part C: Emerging Technologies, 2016, 73: 219-238. DOI: 10.1016/j.trc.2016.11.003.
[14] Zhao J, Ma W, Xu H. Increasing the capacity of the intersection downstream of the freeway off-ramp using presignals[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(8): 674-690. DOI: 10.1111/mice.12281.
[15] Yan C W, Jiang H, Xie S Y. Capacity optimization of an isolated intersection under the phase swap sorting strategy[J]. Transportation Research Part B: Methodological, 2014, 60: 85-106. DOI: 10.1016/j.trb.2013.12.001.