[1] Feng P, Wang Z, Jin F, et al. Vibration serviceability assessment of pedestrian bridges based on comfort level[J].Journal of Performance of Constructed Facilities, 2019, 33:04019046. DOI:10.1061/(ASCE)CF.1943-5509.0001316.
[2] Chen Z, Liu G. Pedestrian-induced vibration theory and dynamic design of footbridges[J]. Engineering Mechanics, 2009, 26(S2): 148-159.(in Chinese)
[3] Lu P, Zhou Y, Wu Y, et al. Comfort assessment of human-induced vibration of pedestrian bridges based on stevens annoyance rate model[J]. International Journal of Structure Stability and Dynamics, 2022, 22(5):2250052. DOI:10.1142/S0219455422500523.
[4] Celik O, Dong C Z, Catbas F N. Investigation of structural response under human-induced excitations using noise-assisted and adaptively transformed multivariate empirical mode decomposition[J]. Journal of Structural Engineering, 2020, 146:4020019. DOI:10.1061/(ASCE)ST.1943-541X.0002511.
[5] Chen D, Wu J, Yan Q. A novel smartphone-based evaluation system of pedestrian-induced footbridge vibration comfort[J].Advances of Structural Engineering, 2019, 22:1685-97. DOI: 10.1177/1369433218824906.
[6] Gaawan S M, El-Robaa A S. Pedestrian bridges structure assessment of comfort and impact of human-induced vibration[J].Bridge Structures, 2019, 15:3-13. DOI:10.3233/BRS-190148.
[7] Drygala I J, Polak M A, Dulinska J M. Vibration serviceability assessment of GFRP pedestrian bridges[J].Engineering Structures, 2019, 184:176-85. DOI: 10.1016/j.engstruct.2019.01. 072.
[8] Lievens K, Lombaert G, de Roeck G, et al. Robust design of a TMD for the vibration serviceability of a footbridge[J].Engineering Structures, 2016, 123:408-18. DOI:10.1016/j. engstruct.2016.05.028.
[9] Terrill R, BE4;umer R, Van Nimmen K, et al. Twin rotor damper for human-induced vibrations of footbridges[J].Journal of Structural Engineering, 2020, 146:4020119. DOI:10.1061/(ASCE)ST.1943-541X.0002654.
[10] Beijing Municipal Engineering Research Institute. Technical specifications of urban pedestrian overcrossing and underpass: CJJ 69—1995[S]. Beijing: China Architecture Publishing and Media Co. Ltd., 1996.(in Chinese)
[11] Research Found for Coal and Steel. Design of footbridges guideline: EN 03[S]. Aachen, Germany: RFCS, 2008.
[12] British Standards Institution. Steel, concrete and composite bridges: BS 5400-2[S]. London, UK: BSI, 1978.
[13] China Academy of Building Research. Rubber isolation bearing for buildings: JG 118-2000[S]. Beijing: Ministry of Construction of the People’s Republic of China, 2020.
[14] Fan W, Sun Y, Sun W, et al. Effects of corrosion and scouring on barge impact fragility of bridge structures considering nonlinear soil-pile interaction[J].Journal of Bridge Engineering, 2021, 26:4021058. DOI:10.1061/(ASCE)BE. 1943-5592.0001757.
[15] Brand M, Sanjayan J G, Sudbury A. Dynamic response of pedestrian bridges for random crowd-loading[J].Australian Journal of Civil Engineering, 2007, 3:27-38. DOI:10.1080/14488353.2007.11463918.
[16] Ma F B, Feng D M, Zhang L, et al. Numerical investigation of the vibration performance of elastically supported bridges under a moving vehicle load based on impact factor[J].International Journal of Civil Engineering, 2022, 20: 1181-1196. DOI:10.1007/s40999-022-00714-3.
[17] Claff D, Williams M S, Blakeborough A. The kinematics and kinetics of pedestrians on a laterally swaying footbridge[J].Journal of Sound and Vibration, 2017, 407: 286-308. DOI: 10.1016/j.jsv.2017.06.036.
[18] Moghimi H, Ronagh H R. Development of a numerical model for bridge-vehicle interaction and human response to traffic-induced vibration[J].Engineering Structures, 2008, 30:3808-19. DOI: 10.1016/j.engstruct.2008.06.015.
[19] CCCC Highway Consultants Co., Ltd. General code for design of highway bridges and culverts: JTG D60—2015[S]. Beijing: China Communications Press Co., Ltd., 2015.(in Chinese)
[20] Chen B, Wu D, Xie X, et al. Comfort assessment for a pedestrian passageway suspended under a girder bridge with random traffic flows[J].Advances of Structural Engineering, 2017, 20:225-34. DOI:10.1177/1369433216660007.