[1] Rafeie M, Zhang J, Asadnia M, et al. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation[J]. Lab on a Chip, 2016, 16(15): 2791-2802. DOI: 10.1039/C6LC00713A.
[2] Lee M G, Shin J H, Choi S, et al. Enhanced blood plasma separation by modulation of inertial lift force[J].Sensors and Actuators B: Chemical, 2014, 190: 311-317. DOI: 10.1016/j.snb.2013.08.092.
[3] Farahinia A, Zhang W J, Badea I. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review[J]. Journal of Science: Advanced Materials and Devices, 2021, 6(3): 303-320. DOI: 10.1016/j.jsamd.2021.03.005.
[4] Tang W L, Zhu S, Jiang D, et al. Channel innovations for inertial microfluidics[J].Lab on a Chip, 2020, 20(19): 3485-3502. DOI: 10.1039/d0lc00714e.
[5] Zhang X J, Zhu Z X, Xiang N, et al. Automated microfluidic instrument for label-free and high-throughput cell separation[J].Analytical Chemistry, 2018, 90(6): 4212-4220. DOI: 10.1021/acs.analchem.8b00539.
[6] Xiang N, Ni Z H. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics[J].Lab on a Chip, 2022, 22(4): 757-767. DOI: 10.1039/d1lc00944c.
[7] Segré G, Silberberg A. Radial particle displacements in poiseuille flow of suspensions[J]. Nature, 1961, 189(4760): 209-210. DOI: 10.1038/189209a0.
[8] Moloudi R, Oh S, Yang C, et al. Inertial particle focusing dynamics in a trapezoidal straight microchannel: Application to particle filtration[J]. Microfluidics and Nanofluidics, 2018, 22(3): 33. DOI: 10.1007/s10404-018-2045-5.
[9] Wang X, Zandi M, Ho C C, et al. Single stream inertial focusing in a straight microchannel[J]. Lab on a Chip, 2015, 15(8): 1812-1821. DOI: 10.1039/c4lc01462f.
[10] Liu C, Hu G Q, Jiang X Y, et al. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers[J].Lab on a Chip, 2015, 15(4): 1168-1177. DOI: 10.1039/C4LC01216J.
[11] Hur S C, Henderson-MacLennan N K, McCabe E R B, et al. Deformability-based cell classification and enrichment using inertial microfluidics[J]. Lab on a Chip, 2011, 11(5): 912-920. DOI: 10.1039/C0LC00595A.
[12] Hur S C, Choi S E, Kwon S, et al. Inertial focusing of non-spherical microparticles[J]. Applied Physics Letters, 2011, 99(4): 044101. DOI: 10.1063/1.3608115.
[13] Yuan D, Zhang J, Sluyter R, et al. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays[J]. Lab on a Chip, 2016, 16(20): 3919-3928. DOI: 10.1039/C6LC00843G.
[14] Jiang D, Huang D, Zhao G T, et al. Numerical simulation of particle migration in different contraction-expansion ratio microchannels[J].Microfluidics and Nanofluidics, 2019, 23(1): 7. DOI: 10.1007/s10404-018-2176-8.
[15] Lee M G, Choi S, Kim H J, et al. Inertial blood plasma separation in a contraction-expansion array microchannel[J].Applied Physics Letters, 2011, 98(25): 253702. DOI: 10.1063/1.3601745.
[16] Bhagat A A S, Hou H W, Li L D, et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation[J]. Lab on a Chip, 2011, 11(11): 1870-1878. DOI: 10.1039/C0LC00633E.
[17] Choi S, Karp J M, Karnik R. Cell sorting by deterministic cell rolling[J]. Lab on a Chip, 2012, 12(8): 1427-1430. DOI: 10.1039/C2LC21225K.
[18] Golden J P, Kim J S, Erickson J S, et al.Multi-wavelength microflow cytometer using groove-generated sheath flow[J]. Lab on a Chip, 2009, 9(13): 1942-1950. DOI: 10.1039/B822442K.
[19] Stroock A D, Dertinger S K W, Ajdari A, et al. Chaotic mixer for microchannels[J]. Science, 2002, 295(5555): 647-651. DOI: 10.1126/science.1066238.
[20] Stoecklein D, Wu C Y, Kim D, et al. Optimization of micropillar sequences for fluid flow sculpting[J].Physics of Fluids, 2016, 28(1): 012003.
[21] Amini H, Sollier E, Masaeli M, et al. Engineering fluid flow using sequenced microstructures[J]. Nature Communications, 2013, 4: 1826. DOI: 10.1038/ncomms2841.
[22] Paulsen K S, Chung A J. Non-spherical particle generation from 4D optofluidic fabrication[J].Lab on a Chip, 2016, 16(16): 2987-2995. DOI: 10.1039/C6LC00208K.
[23] Hou H W, Warkiani M E, Khoo B L, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces[J]. Scientific Reports, 2013, 3: 1259. DOI: 10.1038/srep01259.
[24] Zhu Z X, Wu D, Li S, et al. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation[J].Analytica Chimica Acta, 2021, 1143: 306-314. DOI: 10.1016/j.aca.2020.11.001.
[25] Di Carlo D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48): 18892-18897. DOI: 10.1073/pnas.0704958104.
[26] Zhang Y, Zhang J, Tang F, et al. Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing[J]. Analytical Chemistry, 2018, 90(3): 1786-1794. DOI: 10.1021/acs.analchem.7b03756.
[27] Zhang J, Li W H, Li M, et al. Particle inertial focusing and its mechanism in a serpentine microchannel[J].Microfluidics and Nanofluidics, 2014, 17(2): 305-316. DOI: 10.1007/s10404-013-1306-6.
[28] Geng Z X, Ju Y R, Wang W, et al. Continuous blood separation utilizing spiral filtration microchannel with gradually varied width and micro-pillar array[J]. Sensors and Actuators B: Chemical, 2013, 180: 122-129. DOI: 10.1016/j.snb.2012.06.064.
[29] Shen S F, Tian C, Li T B, et al. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation[J].Lab on a Chip, 2017, 17(21): 3578-3591. DOI: 10.1039/C7LC00691H.
[30] Shen S F, Zhang F J, Wang S T, et al. Ultra-low aspect ratio spiral microchannel with ordered micro-bars for flow-rate insensitive blood plasma extraction[J].Sensors and Actuators B: Chemical, 2019, 287: 320-328. DOI: 10.1016/j.snb.2019.02.066.
[31] Warkiani M E, Guan G F, Luan K B, et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells[J]. Lab on a Chip, 2014, 14(1): 128-137. DOI: 10.1039/C3LC50617G.
[32] Kim J, Lee J, Wu C, et al. Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions[J].Lab on a Chip, 2016, 16(6): 992-1001. DOI: 10.1039/C5LC01100K.
[33] Chen Z Z, Zhao L, Wei L J, et al. River meander-inspired cross-section in 3D-printed helical microchannels for inertial focusing and enrichment[J]. Sensors and Actuators B: Chemical, 2019, 301: 127125. DOI: 10.1016/j.snb.2019.127125.
[34] Mehran A, Rostami P, Saidi M S, et al. High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with U-shaped cross-section[J]. Biosensors, 2021, 11(11): 406. DOI: 10.3390/bios11110406.
[35] Rafeie M, Hosseinzadeh S, Taylor R A, et al. New insights into the physics of inertial microfluidics in curved microchannels. Ⅰ. Relaxing the fixed inflection point assumption[J]. Biomicrofluidics, 2019, 13(3): 034117. DOI: 10.1063/1.5109004.
[36] Zhang J, Yan S, Li W H, et al. High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device[J].RSC Advances, 2014, 4(63): 33149-33159. DOI: 10.1039/C4RA06513A.
[37] Xiang N, Ni Z H. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices[J].Biomedical Microdevices, 2015, 17(6): 110. DOI: 10.1007/s10544-015-0018-y.
[38] Mach A J, Di Carlo D. Continuous scalable blood filtration device using inertial microfluidics[J].Biotechnology and Bioengineering, 2010, 107(2): 302-311. DOI: 10.1002/bit.22833.
[39] Robinson M, Marks H, Hinsdale T, et al. Rapid isolation of blood plasma using a cascaded inertial microfluidic device[J].Biomicrofluidics, 2017, 11(2): 024109. DOI: 10.1063/1.4979198.
[40] Han J Y, DeVoe D L. Plasma isolation in a syringe by conformal integration of inertial microfluidics[J]. Annals of Biomedical Engineering, 2021, 49(1): 139-148. DOI: 10.1007/s10439-020-02526-9.
[41] Di Carlo D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21): 3038-3046.
[42] Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 2009, 9(20): 2973-2980. DOI: 10.1039/B908271A.[LinkOut]
[43] Han S, Zhang X J, Gu Q, et al. Inertial focusing effect of particles in spiral microchannel with asymmetric cross-section[J]. Optics and Precision Engineering, 2022, 30(3): 310-319. DOI:10.37188/OPE.20223003.0310. (in Chinese)