|Table of Contents|

[1] Liao Yingdi, , Wang Xin, et al. Influence of mineral admixtures on the mechanical property anddurability of waste oyster shell mortar [J]. Journal of Southeast University (English Edition), 2023, 39 (3): 277-283. [doi:10.3969/j.issn.1003-7985.2023.03.008]
Copy

Influence of mineral admixtures on the mechanical property anddurability of waste oyster shell mortar()
矿物掺合料对废弃贝壳砂浆的力学性能和耐久性的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 3
Page:
277-283
Research Field:
Materials Sciences and Engineering
Publishing date:
2023-09-20

Info

Title:
Influence of mineral admixtures on the mechanical property anddurability of waste oyster shell mortar
矿物掺合料对废弃贝壳砂浆的力学性能和耐久性的影响
Author(s):
Liao Yingdi1 2 3 Wang Xin1 Feng Jiarui1 4 Meng Yanting1 Chen Da1 2 3 Da Bo1 2 3
1College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
2Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai University, Nanjing 210098, China
3Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
4Nanjing R&D High-Tech Co. Ltd., Nanjing 210024, China
廖迎娣1 2 3 王鑫1 封嘉蕊1 4 孟彦廷1 陈达1 2 3 达波1 2 3
1河海大学港口海岸与近海工程学院, 南京 210098; 2河海大学海岸灾害及防护教育部重点实验室, 南京 210098; 3河海大学长江保护与绿色发展研究院, 南京 210098; 4南京瑞迪高新技术有限公司, 南京 210024
Keywords:
crushed waste oyster shell(WOS)mortar workability mechanical property durability ecological and economic benefits
废弃贝壳砂浆 工作性能 力学性能 耐久性 生态经济效益
PACS:
TU528
DOI:
10.3969/j.issn.1003-7985.2023.03.008
Abstract:
To mitigate the environmental pollution caused by aquatic waste, crushed waste oyster shell(WOS)was added as an aggregate to the mortar. The impact of varying dosages(0%, 20%, 30%, and 40%)of fly ash(FA)/slag powder(SG)and curing periods on the workability, mechanical properties, and durability of the resulting mixtures were investigated. Furthermore, the ecological and economic benefits of WOS mortars were examined. The findings reveal that the compressive strength and static modulus of elasticity in WOS mortar decreased moderately after adding the mineral admixture during the initial curing phase. However, the mechanical properties of WOS mortar improved upon extending the curing period. Additionally, the partial replacement of cement with FA/SG promoted the migration ability of chloride and minimized the drying shrinkage in WOS mortars. In scenarios where engineering application requirements are satisfied, the utilization of WOS mortar could reduce CO2 emissions by 29%.
为有效减少水产养殖废弃物对环境的污染, 研究了破碎废弃贝壳(WOS)作为砂浆骨料的可行性.分析了粉煤灰(FA)/矿渣(SG)质量分数(0%、20%、30%、40%)和养护龄期对WOS砂浆的工作性能、力学性能和耐久性的影响, 探讨了WOS砂浆的生态经济效益.结果表明:在养护初期阶段, 添加矿物掺合料WOS砂浆的抗压强度和静弹性模量略有降低, 但是随着养护龄期的增长, WOS砂浆的力学性能有所改善;利用FA/SG取代部分水泥, 可有效提高WOS砂浆的抗氯离子渗透性能, 降低其干缩率;在满足工程应用要求的前提下, 使用WOS砂浆可有效减少CO2排放约29%.

References:

[1] Liu C, Qian R S, Liu Z Y, et al. Multi-scale modelling of thermal conductivity of phase change material/recycled cement paste incorporated cement-based composite material[J].Materials & Design, 2020, 191: 108646. DOI: 10.1016/j.matdes.2020.108646.
[2] Mi R J, Pan G H. Slowing down CO2 effective diffusion speeds in recycled aggregate concrete by using carbon capture technology and high-quality recycled aggregate[J]. Journal of Building Engineering, 2022, 45: 103628. DOI: 10.1016/j.jobe.2021.103628.
[3] Eziefula U G, Ezeh J C, Eziefula B I. Properties of seashell aggregate concrete: A review[J]. Construction and Building Materials, 2018, 192: 287-300. DOI: 10.1016/j.conbuildmat.2018.10.096.
[4] Kuo W T, Wang H Y, Shu C Y, et al. Engineering properties of controlled low-strength materials containing waste oyster shells[J]. Construction and Building Materials, 2013, 46: 128-133. DOI: 10.1016/j.conbuildmat.2013.04.020.
[5] Da B, Yu H F, Ma H Y, et al. Effect of carbonation-drying-wetting on durability of coral aggregate seawater concrete [J]. Journal of Southeast University, 2021, 37(1): 67-74. DOI: 10.3969/j.issn.1003-7985.2021.01.009.
[6] Wang P G, Mo R, Li S, et al. A chemo-damage-transport model for chloride ions diffusion in cement-based materials: Combined effects of sulfate attack and temperature[J].Construction and Building Materials, 2021, 288: 123121. DOI: 10.1016/j.conbuildmat.2021.123121.
[7] Jin Z Q, Zhao T J, Gao S, et al. Chloride ion penetration into concrete under hydraulic pressure[J]. Journal of Central South University, 2013, 20(12): 3723-3728. DOI: 10.1007/s11771-013-1900-5.
[8] Liu R W, Chen D, Cai X L, et al. Hardened properties of mortar mixtures containing pre-treated waste oyster shells[J].Journal of Cleaner Production, 2020, 266: 121729. DOI: 10.1016/j.jclepro.2020.121729.
[9] Laskar A I, Talukdar S. Rheological behavior of high performance concrete with mineral admixtures and their blending[J]. Construction and Building Materials, 2008, 22(12): 2345-2354. DOI: 10.1016/j.conbuildmat.2007.10.004.
[10] Zhang Y J, Zhang X. Grey connection analysis between particle size distribution of slag powder and fluidity of its cement mortar [J]. Journal of Tongji University, 2003, 12: 1449-1453. DOI:10.3321/j.issn:0253-374X.2003.12.014. (in Chinese)
[11] Mo K H, Ling T C, Alengaram U J, et al. Overview of supplementary cementitious materials usage in lightweight aggregate concrete [J]. Construction and Building Materials, 2017, 139: 403-418. DOI: 10.1016/j.conbuildmat.2017.02.081.
[12] Zhou S X, Chen Y M, Zhang W S. Prediction of compressive strength of cement mortars with fly ash and activated coal gangue[J].Journal of Southeast University(English Edition), 2006, 22(4): 549-552. DOI: 10.3969/j.issn.1003-7985.2006.04.022.
[13] Gesoglu M, �D6;zbay E. Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: Binary, ternary and quaternary systems[J]. Materials and Structures, 2007, 40(9): 923-937. DOI: 10.1617/s11527-007-9242-0.
[14] Liu L, Wang X C, Chen H S, et al. Microstructure-based modelling of drying shrinkage and microcracking of cement paste at high relative humidity[J].Construction and Building Materials, 2016, 126: 410-425. DOI: 10.1016/j.conbuildmat.2016.09.066.
[15] Yu B, Ma Q, Huang H C, et al. Probabilistic prediction model for chloride diffusion coefficient of concrete in terms of material parameters[J].Construction and Building Materials, 2019, 215: 941-957. DOI: 10.1016/j.conbuildmat.2019.04.147.
[16] Zhao P, Zhou L L, Bai M, et al. Improving chloride ion penetration resistance of cement mortar by strong base anion exchange resin[J]. Construction and Building Materials, 2019, 226: 483-491. DOI: 10.1016/j.conbuildmat.2019.07.282.
[17] Chen D, Zhang P C, Pan T, et al. Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials[J].Journal of Cleaner Production, 2019, 237: 117811. DOI: 10.1016/j.jclepro.2019.117811.
[18] Mithun B M, Narasimhan M C. Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate[J]. Journal of Cleaner Production, 2016, 112: 837-844. DOI: 10.1016/j.jclepro.2015.06.026.

Memo

Memo:
Biographies: Liao Yingdi(1977—), female, doctor, associate professor, liaoyingdi@hhu.edu.cn; Da Bo(corresponding author), male, doctor, associate professor, dabo@hhu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51509081, 52208241), Jiangsu Provincial Key Research and Development Program(No. BE2020715).
Citation: Liao Yingdi, Wang Xin, Feng Jiarui, et al.Influence of mineral admixtures on the mechanical property and durability of waste oyster shell mortar[J].Journal of Southeast University(English Edition), 2023, 39(3):277-283.DOI:10.3969/j.issn.1003-7985.2023.03.008.
Last Update: 2023-09-20