[1] Ministry of Transport of the People’s Republic of China. 2022 Transport Industry Development Statistical Bulletin[R]. Beijing: Ministry of Transport of the People’s Republic of China, 2023.(in Chinese)
[2] Ma J, Zhao X M, He S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. DOI:10.3969/j.issn.1671-1637.2017.05.012. (in Chinese)
[3] Zhang D. Common rural cement concrete pavement diseases and treatment[J]. Shanxi Architecture, 2014, 40(25): 175-176. DOI:10.13719/j.cnki.cn14-1279/tu.2014.25.092. (in Chinese)
[4] Zhang W G, Zhong J T, Yu J X, et al. Research on pavement crack detection technology based on convolution neural network[J]. Journal of Central South University(Science and Technology), 2021, 52(7): 2402-2415. DOI:10.11817/j.issn.1672-7207.2021.07.026. (in Chinese)
[5] Ministry of Transport of the People’s Republic of China. Highway performance assessment standards: JTG 5210—2018[S]. Beijing: People’s Communications Publishing House, 2018.(in Chinese)
[6] Ministry of Transport of the People’s Republic of China. Low-class rural highway performance assessment guide[R]. Beijing: Ministry of Transport of the People’s Republic of China, 2023.(in Chinese)
[7] Pei M. On concrete pavement cracks and prevention measures[J]. Shanxi Architecture, 2010, 36(7):258, 286. DOI:10.13719/j.cnki.cn14-1279/tu.2010.07.082. (in Chinese)
[8] Liu Y F, Fan J S, Nie J G, et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal, 2021, 54(6): 79-98. DOI:10.15951/j.tmgcxb.2021.06.008. (in Chinese)
[9] Gou C, Peng B, Li T R, et al. Pavement crack detection based on the improved faster-RCNN[C]//2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering(ISKE). Dalian, China, 2020: 962-967. DOI: 10.1109/ISKE47853.2019.9170456.
[10] Sun Z Y, Pei L L, Li W, et al. Pavement sealed crack detection method based on improved faster R-CNN[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(2): 84-93.(in Chinese)
[11] Xia Y, Zhao M, Chen Y F, et al. Pavement crack disease identification method based on cascade RCNN: CN114170511A [P].2022-03-11.(in Chinese)
[12] Zhang R, Shi Y X, Yu X Z. Pavement crack detection based on deep learning[C]//2021 33rd Chinese Control and Decision Conference(CCDC). Kunming, China, 2021: 7367-7372. DOI: 10.1109/CCDC52312.2021.9602216.
[13] Hegde V, Trivedi D, Alfarrarjeh A, et al. Yet another deep learning approach for road damage detection using ensemble learning[C]//2020 IEEE International Conference on Big Data. Atlanta, GA, USA, 2021: 5553-5558. DOI: 10.1109/BigData50022.2020.9377833.
[14] Sun Z Y, Ma Z D, Li W, et al. Pavement crack identification method based on deep convolutional neural network fusion model[J]. Journal of Chang’an University(Natural Science Edition), 2020, 40(4): 1-13. DOI:10.19721/j.cnki.1671-8879.2020.04.001. (in Chinese)
[15] Guo W T. Intelligent detection device of pavement disease based on image recognition technology[J]. Journal of Physics: Conference Series, 2021, 1884(1): 012032. DOI: 10.1088/1742-6596/1884/1/012032.
[16] Zhang S X, Zhang H C, Li X Z, et al. Study on multi-objective identification of pavement cracks based on machine vision[J]. Journal of Highway and Transportation Research and Development, 2021, 38(3): 30-39.(in Chinese)
[17] Tran T S, Tran V P, Lee H J, et al. A two-step sequential automated crack detection and severity classification process for asphalt pavements[J]. International Journal of Pavement Engineering, 2022, 23(6): 2019-2033. DOI: 10.1080/10298436.2020.1836561.
[18] Shi L, Pei L L, Chen H, et al. Detection of exposed distress of cement pavement based on improved RetinaNet[J]. Computer Systems and Applications, 2022, 31(4): 352-359. DOI:10.15888/j.cnki.csa.008436. (in Chinese)
[19] Mohan Prakash B, Sriharipriya K C. Enhanced pothole detection system using YOLOX algorithm[J]. Autonomous Intelligent Systems, 2022, 2(1): 1-16. DOI: 10.1007/s43684-022-00037-z.
[20] Huang J, Zhang G. A survey of current research on image target detection algorithms based on deep convolutional neural networks [J]. Digital Technology and Application, 2020, 56(17): 12-23. DOI:10.3778/j.issn.1002-8331.2005-0021. (in Chinese)
[21] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
[22] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile, 2016: 1440-1448. DOI: 10.1109/ICCV.2015.169.
[23] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[24] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy, 2017: 2980-2988. DOI: 10.1109/ICCV.2017.322.
[25] Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 6154-6162. DOI: 10.1109/CVPR.2018.00644.
[26] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[27] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, HI, USA, 2017: 6517-6525. DOI: 10.1109/CVPR.2017.690.
[28] Redmon J, Farhadi A. Yolov3: An incremental improvement[EB/OL].(2018-04-08)[2023-07-20]. https://arxiv.org/abs/1804.02767.pdf.
[29] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2023-05-20]. https://arxiv.org/abs/2004.10934.pdf.
[30] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.10.1007/978-3-319-46448-0_2.
[31] Xu D G, Wang L, Li F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.(in Chinese)
[32] Ge Z, Liu S T, Wang F, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL].(2021-07-18)[2023-06-10]. https://arxiv.org/abs/2107.08430.pdf.
[33] Reis D, Kupec J, Hong J, et al. Real-time flying object detection with YOLOv8[EB/OL].(2023-05-17)[2023-07-10]. https://arxiv.org/abs/2305.09972.pdf.
[34] Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection [EB/OL].(2019-11-21)[2023-06-10]. https://arxiv.org/abs/1911.09516.pdf.
[35] Tong Z J, Chen Y H, Xu Z W, et al. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism[EB/OL].(2023-01-24)[2023-07-20]. https://arxiv.org/abs/2301.10051.pdf.