[1] Fu Z J, Zhan X Z, Luo L, et al. Modeling fatigue of ascending stair evacuation with modified fine discrete floor field cellular automata[J].Physics Letters A, 2019, 383(16): 1897-1906. DOI: 10.1016/j.physleta.2019.03.030.
[2] Ma J, Lo S M, Song W G. Cellular automaton modeling approach for optimum ultra high-rise building evacuation design[J]. Fire Safety Journal, 2012, 54:57-66. DOI: 10.1016/j.firesaf.2012.07.008.
[3] Lu L L, Chan C Y, Wang J, et al. A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 317-329. DOI: 10.1016/j.trc.2016.08.018.
[4] Xie W, Lee E W M, Lee Y Y. Simulation of spontaneous leader-follower behaviour in crowd evacuation[J]. Automation in Construction, 2022, 134: 104100. DOI: 10.1016/j.autcon.2021.104100.
[5] Xie W, Lee E W M, Li T, et al. A study of group effects in pedestrian crowd evacuation: Experiments, modelling and simulation[J]. Safety Science, 2021, 133: 105029. DOI: 10.1016/j.ssci.2020.105029.
[6] Huang K K, Zheng X P, Cheng Y, et al. Behavior-based cellular automaton model for pedestrian dynamics[J]. Applied Mathematics and Computation, 2017, 292: 417-424. DOI: 10.1016/j.amc.2016.07.002.
[7] Zheng Y, Li X G, Jia B, et al. Simulation of pedestrians’ evacuation dynamics with underground flood spreading based on cellular automaton[J].Simulation Modelling Practice and Theory, 2019, 94: 149-161. DOI: 10.1016/j.simpat.2019.03.001.
[8] Zheng Y, Jia B, Li X G, et al. Evacuation dynamics considering pedestrians’ movement behavior change with fire and smoke spreading[J].Safety Science, 2017, 92: 180-189. DOI: 10.1016/j.ssci.2016.10.009.
[9] Li Y, Chen M Y, Dou Z, et al. A review of cellular automata models for crowd evacuation[J].Physica A: Statistical Mechanics and Its Applications, 2019, 526: 120752. DOI: 10.1016/j.physa.2019.03.117.
[10] Blue V J, Adler J L. Cellular automata microsimulation for modeling bi-directional pedestrian walkways[J].Transportation Research Part B: Methodological, 2001, 35(3): 293-312. DOI: 10.1016/S0191-2615(99)00052-1.
[11] Burstedde C, Klauck K, Schadschneider A, et al. Simulation of pedestrian dynamics using a two-dimensional cellular automaton[J]. Physica A: Statistical Mechanics and Its Applications, 2001, 295(3/4): 507-525. DOI: 10.1016/S0378-4371(01)00141-8.
[12] Alizadeh R. A dynamic cellular automaton model for evacuation process with obstacles[J].Safety Science, 2011, 49(2): 315-323. DOI: 10.1016/j.ssci.2010.09.006.
[13] Zhao R F, Zhai Y, Qu L, et al. A continuous floor field cellular automata model with interaction area for crowd evacuation[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 575: 126049. DOI: 10.1016/j.physa.2021.126049.
[14] Huang H J, Guo R Y. Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J].Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2008, 78(2 Pt 1): 021131. DOI: 10.1103/PhysRevE.78.021131.
[15] Peng Y C, Chou C I. Simulation of pedestrian flow through a “T” intersection: A multi-floor field cellular automata approach[J].Computer Physics Communications, 2011, 182(1): 205-208. DOI: 10.1016/j.cpc.2010.07.035.
[16] Yue H, Guan H Z, Shao C F, et al. Simulation of pedestrian evacuation with asymmetrical exits layout[J].Physica A: Statistical Mechanics and Its Applications, 2011, 390(2): 198-207. DOI: 10.1016/j.physa.2010.10.003.
[17] Zhu K J, Yang Y, Shi Q. Study on evacuation of pedestrians from a room with multi-obstacles considering the effect of aisles[J]. Simulation Modelling Practice and Theory, 2016, 69: 31-42. DOI: 10.1016/j.simpat.2016.09.002.
[18] Zheng Y, Li X G, Zhu N, et al. Evacuation dynamics with smoking diffusion in three dimension based on an extended floor-field model[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 507: 414-426. DOI: 10.1016/j.physa.2018.05.020.
[19] Zou B B, Lu C X, Mao S R, et al. Effect of pedestrian judgement on evacuation efficiency considering hesitation[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 547: 122943. DOI: 10.1016/j.physa.2019.122943.
[20] Hsu J J, Chu J C. Long-term congestion anticipation and aversion in pedestrian simulation using floor field cellular automata[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 195-211. DOI: 10.1016/j.trc.2014.08.021.
[21] Suma Y S, Yanagisawa D, Nishinari K. Anticipation effect in pedestrian dynamics: Modeling and experiments[J].Physica A: Statistical Mechanics and Its Applications, 2012, 391(1/2): 248-263. DOI: 10.1016/j.physa.2011.07.022.
[22] Li M, Zhang L Z, Zhang M Y, et al. Crowd behavior simulation based on psychological emotion, sociological role and personality[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference(ITAIC). Chongqing, China, 2019: 371-377. DOI: 10.1109/ITAIC.2019.8785519.
[23] Liu T T, Liu Z, Chai Y J, et al. Simulating evacuation crowd with emotion and personality[J]. Artificial Life and Robotics, 2019, 24(1): 59-67. DOI: 10.1007/s10015-018-0459-5.
[24] Mao Y, Yang S W, Li Z N, et al. Personality trait and group emotion contagion based crowd simulation for emergency evacuation[J]. Multimedia Tools and Applications, 2020, 79(5): 3077-3104. DOI: 10.1007/s11042-018-6069-3.
[25] Zhan X, Yang L Z, Zhu K J, et al. Experimental study of the impact of personality traits on occupant exit choice during building evacuation[J].Procedia Engineering, 2013, 62: 548-553. DOI: 10.1016/j.proeng.2013.08.099.
[26] Chabini I. Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal run time[J]. Transportation Research Record, 1998, 1645(1): 170-175. DOI: 10.3141/1645-21.