[1] Bal-Ozturk A, Ozkahraman B, Ozbas Z, et al. Advancements and future directions in the antibacterial wound dressings—a review[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021, 109(5): 703-716. DOI: 10.1002/jbm.b.34736.
[2] Marta B, Potara M, Iliut M, et al. Designing chitosan-silver nanoparticles-graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487:113-120. DOI: 10.1016/j.colsurfa.2015.09.046
[3] Huang J, Cao M F, Ma Y X, et al. Wastewater treatment performance and microbial community structure in the constructed wetland under double-pressure of low temperature and Ag NPs exposure[J]. Journal of Southeast University(English Edition), 2022, 38(3):291-299. DOI: 10.3969/j.issn.1003-7985.2022.03.011.
[4] Huong N T, Dat N M, Thinh D B, et al. Optimization of the antibacterial activity of silver nanoparticles-decorated graphene oxide nanocomposites[J]. Synthetic Metals, 2020, 268: 116492. DOI: 10.1016/j.synthmet.2020.116492.
[5] Dat N M, Thinh D B, Huong L M, et al. Facile synthesis and antibacterial activity of silver nanoparticles-modified graphene oxide hybrid material: The assessment, utilization, and anti-virus potentiality[J]. Materials Today Chemistry, 2022, 23: 100738. DOI: 10.1016/j.mtchem.2021.100738.
[6] Guo L P, Wang H, Chen B, et al. Dispersion of graphene in silane coupling agent aqueous solutions[J]. Journal of Southeast University(English Edition), 2020, 36(1): 67-72. DOI: 10.3969/j.issn.1003-7985.2020.01.009.
[7] Khorrami S, Abdollahi Z, Eshaghi G, et al. An improved method for fabrication of Ag-GO nanocomposite with controlled anti-cancer and anti-bacterial behavior; a comparative study[J]. Scientific Reports, 2019, 9: 9167. DOI: 10.1038/s41598-019-45332-7.
[8] Islami M, Zarrabi A, Tada S, et al. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide[J]. International Journal of Nanomedicine, 2018, 13: 6059-6071. DOI: 10.2147/IJN.S178374.
[9] Zhu Z J, Su M, Ma L, et al. Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability[J]. Talanta, 2013, 117: 449-455. DOI: 10.1016/j.talanta.2013.09.017.
[10] Jaworski S, Wierzbicki M, Sawosz E, et al. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent[J]. Nanoscale Research Letters, 2018, 13:116. DOI:10.1186/s11671-018-2533-2.
[11] Tan Q Y, Kan Y J, Zhao G T, et al. Pressure-induced strong adhesion between chitosan nanofilms[J]. Journal of Southeast University(English Edition), 2015, 31(1): 113-117. DOI: 10.3969/j.issn.1003-7985.2015.01.019.
[12] Li Z, Zhang Y, Shen Y M, et al. The study on the relationship between the molecular structures of chitosan derivatives and their hydrate inhibition performance[J]. Journal of Molecular Liquids, 2022, 364: 120007. DOI: 10.1016/j.molliq.2022.120007
[13] Seidi F, Yazdi M K, Jouyandeh M, et al. Chitosan-based blends for biomedical applications[J]. International Journal of Biological Macromolecules, 2021, 183:1818-1850. DOI: 10.1016/j.ijbiomac.2021.05.003.
[14] Tang C, Zhao B, Zhu J J, et al. Preparation and characterization of chitosan/sodium cellulose sulfate/silver nanoparticles composite films for wound dressing[J]. Materials Today Communications, 2022, 33: 104192. DOI: 10.1016/j.mtcomm.2022.104192.
[15] Peng W, Li D, Dai K L, et al. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications[J]. International Journal of Biological Macromolecules, 2022, 208: 400-408. DOI: 10.1016/j.ijbiomac.2022.03.002.
[16] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. DOI: 10.1021/nn1006368.
[17] Li P H, Zou X Y, Wang X D, et al. A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments[J]. Journal of Hazardous Materials, 2020, 385: 121601. DOI: 10.1016/j.jhazmat.2019.121601.
[18] Tang J, Chen Q, Xu L G, et al. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3867-3874. DOI: 10.1021/am4005495.
[19] Khan Y H, Islam A, Sarwar A, et al. Novel green nanocomposites films fabricated by indigenously synthesized graphene oxide and chitosan[J]. Carbohydrate Polymers, 2016, 146: 131-138. DOI: 10.1016/j.carbpol.2016.03.031.
[20] Liang Y Q, Liang Y P, Zhang H L, et al. Antibacterial biomaterials for skin wound dressing[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(3): 353-384. DOI: 10.1016/j.ajps.2022.01.001.
[21] Simoes D, Miguel S P, Ribeiro M P, et al. Recent advances on antimicrobial wound dressing: A review[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127: 130-141. DOI: 10.1016/j.ejpb.2018.02.022.
[22] Bi C L, Zhang C H, Ma F Q, et al. Development of 3D porous Ag+ decorated PCN-222 @ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U(VI)from seawater[J]. Separation and Purification Technology, 2022, 281: 119900. DOI: 10.1016/j.seppur.2021.119900.
[23] Kasinathan K, Marimuthu K, Murugesan B, et al. Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity[J]. International Journal of Biological Macromolecules, 2021, 178: 270-282. DOI: 10.1016/j.ijbiomac.2021.02.127.