|Table of Contents|

[1] Wang Yan, Mei Shue, Xu Ruize, Zhong Weijun, et al. Effects of online advertising and consumer engagement on a social media platform [J]. Journal of Southeast University (English Edition), 2023, 39 (4): 426-434. [doi:10.3969/j.issn.1003-7985.2023.04.012]
Copy

Effects of online advertising and consumer engagement on a social media platform()
在线广告和消费者参与对社交媒体平台的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 4
Page:
426-434
Research Field:
Economy and Management
Publishing date:
2023-12-20

Info

Title:
Effects of online advertising and consumer engagement on a social media platform
在线广告和消费者参与对社交媒体平台的影响
Author(s):
Wang Yan Mei Shu’e Xu Ruize Zhong Weijun
School of Economic and Management, Southeast University, Nanjing 211189, China
王岩 梅姝娥 徐瑞泽 仲伟俊
东南大学经济管理学院, 南京211189
Keywords:
advertising online platform social media retailer equilibrium cost-sharing
广告 在线平台 社交媒体零售商 均衡 成本分摊
PACS:
C934
DOI:
10.3969/j.issn.1003-7985.2023.04.012
Abstract:
To investigate the impact of online advertising and consumer engagement on profits, an exponential demand function is proposed to capture user behavior on a social media platform with a two-echelon supply chain model. According to the different subjects of advertising cost, three sales models are proposed: manufacturers bearing advertising cost, retailers bearing advertising cost, and manufactures and retailers sharing advertising cost. Meanwhile, three corresponding mathematical models are constructed for analysis. The equilibrium results demonstrate that improving consumer engagement can help the players earn more profits;however, typical online retailers are often reluctant to bear costs under any circumstances. When community diffusion is low, social media platforms are willing to incur a proportion of advertising costs to attract more user engagement. More meaningful management insights indicate that community diffusion has a more significant effect on manufacturers’ profit. In the context of social media, supply chain players should leverage advertising to improve social community diffusion rather than focusing on the cost-sharing ratio.
为了研究在线广告和消费者参与对利润的影响, 提出了一个指数形式的公式来描述社交媒体平台在两阶段供应链模型中的实际用户需求.根据广告成本承担主体的不同, 提出了3种销售模式:制造商承担广告成本、零售商承担广告成本以及制造商和零售商分摊广告成本.对应3种销售模式构造了3种不同的数学模型进行分析.均衡分析结果表明, 提高消费者黏性可以帮助玩家获得更多利润.正常的网络商家在任何情况下都不愿意承担成本.当社区扩散较低时, 社交媒体平台愿意承担一定比例的广告成本, 以吸引更多的用户参与.另外, 社区扩散对制造商的利润具有更显著的提升作用.在社交媒体的背景下, 供应链中的参与者应该将重点放在利用广告来改善社区扩散能力, 而不是争论成本分担比例.

References:

[1] Chen Y J, Dai T L, Korpeoglu C G, et al.OM forum—Innovative online platforms: Research opportunities[J]. Manufacturing & Service Operations Management, 2020, 22(3): 430-445. DOI: 10.1287/msom.2018.0757.
[2] Gu Z, Tayi G K. Consumer pseudo-showrooming and omni-channel placement strategies[J]. MIS Quarterly, 2017, 41(2): 583-606. DOI: 10.25300/MISQ/2017/41.2.11.
[3] Huo H H, Liu Z Y, Min Q F. Social media advertising reactance model: A theoretical review[J]. Internet Research, 2021, 31(3): 822-845. DOI:10.1108/intr-02-2020-0072.
[4] Voorveld H A M, van Noort G, Muntinga D G, et al. Engagement with social media and social media advertising: The differentiating role of platform type[J]. Journal of Advertising, 2018, 47(1): 38-54. DOI: 10.1080/00913367.2017.1405754.
[5] Chu S C, Deng T, Cheng H. The role of social media advertising in hospitality, tourism and travel: A literature review and research agenda[J]. International Journal of Contemporary Hospitality Management, 2020, 32(11): 3419-3438. DOI: 10.1108/IJCHM-05-2020-0480.
[6] Hamouda M. Understanding social media advertising effect on consumers’ responses: An empirical investigation of tourism advertising on Facebook[J]. Journal of Enterprise Information Management, 2018, 31: 426-445. DOI: 10.1108/JEIM-07-2017-0101.
[7] Read W, Robertson N, Mcquilken L, et al. Consumer engagement on Twitter: Perceptions of the brand matter[J]. European Journal of Marketing, 2019, 53(9): 1905-1933.DOI: 10.1108/ejm-10-2017-0772.
[8] Narangajavana Kaosiri Y, Callarisa Fiol L J, Moliner Tena M Á, et al. User-generated content sources in social media: A new approach to explore tourist satisfaction[J]. Journal of Travel Research, 2019, 58(2): 253-265. DOI: 10.1177/0047287517746014.
[9] Lee D, Hosanagar K, Nair H S. Advertising content and consumer engagement on social media: Evidence from facebook[J]. SSRN Electronic Journal, 2018, 64(11): 5105-5131. DOI: 10.1287/mnsc.2017.2902.
[10] Huang J. Demand functions in decision modeling: A comprehensive survey and research directions[J]. Decision Sciences, 2013, 44(3): 557-609. DOI: 10.1111/deci.12021.
[11] Jørgensen S, Zaccour G. A survey of game-theoretic models of cooperative advertising[J]. European Journal of Operational Research, 2014, 237(1): 1-14. DOI: 10.1016/j.ejor.2013.12.017.
[12] Zhang T L, Guo X F, Hu J, et al. Cooperative advertising models under different channel power structure[J]. Annals of Operations Research, 2020, 291(1/2): 1103-1125. DOI: 10.1007/s10479-019-03257-4.
[13] Kianfar K. Maximizing profit in a supply chain by considering advertising and price elasticity of demand[J].Computers & Industrial Engineering, 2019, 135: 265-274. DOI: 10.1016/j.cie.2019.06.007.
[14] Alalwan A A. Investigating the impact of social media advertising features on customer purchase intention[J]. International Journal of Information Management, 2018, 42: 65-77. DOI: 10.1016/j.ijinfomgt.2018.06.001.
[15] Dwivedi Y K, Ismagilova E, Hughes D L, et al. Setting the future of digital and social media marketing research: Perspectives and research propositions[J]. International Journal of Information Management, 2021, 59: 102168. DOI: 10.1016/j.ijinfomgt.2020.102168.
[16] Szmerekovsky J G, Zhang J. Pricing and two-tier advertising with one manufacturer and one retailer[J]. European Journal of Operational Research, 2009, 192(3): 904-917. DOI: 10.1016/j.ejor.2007.10.005.
[17] Zhang T L, Guo X F, Hu J, et al. Cooperative advertising models under different channel power structure[J]. Annals of Operations Research, 2020, 291(1/2): 1103-1125. DOI: 10.1007/s10479-019-03257-4.
[18] Xie J X, Neyret A. Co-op advertising and pricing models in manufacturer-retailer supply chains[J]. Computers & Industrial Engineering, 2009, 56(4): 1375-1385. DOI: 10.1016/j.cie.2008.08.017.
[19] Seyed Esfahani M M, Biazaran M, Gharakhani M. A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-retailer supply chains[J]. European Journal of Operational Research, 2011, 211(2): 263-273. DOI: 10.1016/j.ejor.2010.11.014.
[20] Barnett N S, Cerone P, Dragomir S S, et al. Approximating Csiszár f-divergence by the use of Taylor’s formula with integral remainder[J]. Mathematical Inequalities & Applications, 2002(3): 417-434. DOI: 10.7153/mia-05-42.
[21] Bhattacharya S, Sinha S, Roy S, et al. Towards finding the best-fit distribution for OSN data[J].The Journal of Supercomputing, 2020, 76(12): 9882-9900. DOI: 10.1007/s11227-020-03232-y.

Memo

Memo:
Biographies: Wang Yan(1983—), female, Ph.D. candidate; Mei Shue(corresponding author), female, doctor, professor, meishue@seu.edu.cn.
Citation: Wang Yan, Mei Shu’e, Xu Ruize, et al.Effects of online advertising and consumer engagement on a social media platform[J].Journal of Southeast University(English Edition), 2023, 39(4):426-434.DOI:10.3969/j.issn.1003-7985.2023.04.012.
Last Update: 2023-12-20