[1] Cheng B, Abdelbaset H, Tian L, et al. Hot spot stress investigation on rib-to-deck-to-floor beam connections in UHPC reinforced OSDs[J].Journal of Constructional Steel Research, 2021, 179: 106517. DOI:10.1016/j.jcsr. 2020.106517.
[2] Li Z J, Wang H, Wang R G, et al. Experimental study on fatigue performance of diaphragm openings of orthotropic steel bridge decks based on 3D-DIC[J].Journal of Southeast University(Natural Science Edition), 2019, 49(6): 1116-1123. DOI:10.3969/j.issn.1001-0505.2019.06.014. (in Chinese)
[3] Cheng B, Abdelbaset H, Li H T, et al. Fatigue behavior of rib-to-floorbeam welded connections in UHPC reinforced OSDs subjected to longitudinal flexural[J]. Engineering Failure Analysis, 2022, 107: 106383. DOI:10.1016/j.engfailanal. 2022.106383.
[4] Zhong W, Ding Y L, Wang L B, et al. Experimental study on welding residual stress of Q370qE steel deck deck-to-rib[J].Journal of Southeast University(Natural Science Edition), 2018, 48(5): 857-863. DOI:10.3969/j.issn.1001-0505.2018.05.012. (in Chinese)
[5] Zhang Q H, Da L T, Li J, et al. Fatigue resistance of an innovative rib-to-deck both-sides welded joint in orthotropic steel bridge deck[J].China Journal of Highway and Transport, 2022, 35(8): 162-174. DOI:10.19721/j.cnki. 1001-7372.2022.08.015. (in Chinese)
[6] Wang Y, Shan X D, Chen J, et al. UHPC-based strengthening technique for orthotropic steel decks with significant fatigue cracking issues[J].Journal of Constructional Steel Research, 2021, 176: 106393. DOI:10.1016/j.jcsr. 2020.106393.
[7] Qin S Q, Huang C L, Zhang J B, et al. Comparison of fatigue performance between steel-UHPC composite deck and epoxy asphalt steel deck based on stress monitoring[J].Journal of Southeast University(Natural Science Edition), 2021, 51(1): 61-70. DOI:10.3969/j.issn.1001-0505.2021.01.009. (in Chinese)
[8] Zhu Z W, Xiang Z, Li J P, et al. Fatigue damage investigation on diaphragm cutout detail on orthotropic bridge deck based on field measurement and FEM[J].Thin-Walled Structures, 2020, 157: 107106. DOI:10.1016/j.tws. 2020.107106.
[9] Shi L Z, Cheng B, Dong H N, et al. Research on fatigue crack identification for steel bridge deck plates based on convolutional neural network[J].Bridge Construction, 2023, 53(4): 62-69. DOI:10.20051/j.issn.1003-4722.2023.04.009. (in Chinese)
[10] Ali L, Khan S, Iqbal N, et al. An experimental study of damage detection on typical joints of jackets platform based on electro-mechanical impedance technique[J].Materials, 2021, 14(23): 7168. DOI:10.3390/ma14237168.
[11] Ju X C, Liang Y Q, Zhao X X, et al.Fatigue crack detection of steel bridges by the acoustic emission technique[J]. Journal of Harbin Engineering University, 2023, 44(4): 649-656. DOI:10.11990/jheu. 202202028. (in Chinese)
[12] Wang D L, Dong Y Q, Pan Y, et al.Machine vision-based monitoring methodology for the fatigue cracks in U-rib-to-deck weld seams[J]. IEEE Access, 2020, 8: 94204-94219. DOI:10.1109/ACCESS. 2020.2995276.
[13] Shi L, Cheng B, Xiang S, et al. Monitoring for fatigue crack geometry in orthotropic steel bridge decks by application of reflected Lamb waves[J].Thin-Walled Structures, 2023, 192: 111170. DOI:10.1016/j.tws. 2023.111170.
[14] Shi L, Cheng B, Li D, et al. Fatigue crack monitoring in OSDs using Lamb wave longitudinal transmission[J].Journal of Constructional Steel Research, 2024, 212: 108245. DOI:10.1016/j.jcsr. 2023.108245.
[15] Zhang D, Cui C, Zhang X, et al. Monitoring fatigue cracks in rib-to-deck joints of orthotropic steel deck using ultrasonic Lamb waves[J].Thin-Walled Structures, 2023, 189: 110922. DOI:10.1016/j.tws. 2023.110922.
[16] Qiu L, Fang F, Yuan S F, et al. An enhanced dynamic Gaussian mixture model-based damage monitoring method of aircraft structures under environmental and operational conditions[J].Structural Health Monitoring, 2019, 18(2): 524-545. DOI:10.1177/1475921718759344.
[17] Zhu Y P, Li F C, Bao W J. Fatigue crack detection under the vibration condition based on ultrasonic guided waves[J].Structural Health Monitoring, 2021, 20(3): 931-941. DOI:10.1177/1475921719860772.
[18] Wang P, Zhou W S, Li H. A singular value decomposition-based guided wave array signal processing approach for weak signals with low signal-to-noise ratios[J].Mechanical Systems and Signal Processing, 2020, 141: 106450. DOI:10.1016/j.ymssp. 2019.106450
[19] State General Administration of the People’s Republic of China. Metallic materials of tensile testing: GB/T 228—2015[S]. Beijing: Standard Press of China, 2015.(in Chinese)
[20] American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge design specifications[S]. Washington, DC, USA: AASHTO. 2020