[1] Hu X J, Yang J, Jiang F L, et al. Steel surface defect detection based on self-supervised contrastive representation learning with matching metric[J].Applied Soft Computing, 2023, 145: 110578. DOI: 10.1016/j.asoc.2023.110578.
[2] Zhang S Y, Zhang Q J, Gu J F, et al. Visual inspection of steel surface defects based on domain adaptation and adaptive convolutional neural network[J].Mechanical Systems and Signal Processing, 2021, 153: 107541. DOI: 10.1016/j.ymssp.2020.107541.
[3] Roy A M, Bhaduri J. Dense SPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism[J]. Advanced Engineering Informatics, 2023, 56: 102007. DOI: 10.1016/j.aei.2023.102007.
[4] Ni Y H, Lu H, Ji C, et al. Comparative analysis on bridge corrosion damage detection based on semantic segmentation[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(2): 201-209. DOI:10.3969/j.issn.1001-0505.2023.02.003. (in Chinese)
[5] Gao Y P, Gao L, Li X Y. A hierarchical training-convolutional neural network with feature alignment for steel surface defect recognition[J].Robotics and Computer-Integrated Manufacturing, 2023, 81: 102507. DOI: 10.1016/j.rcim.2022.102507.
[6] Xing J J, Jia M P. A convolutional neural network-based method for workpiece surface defect detection[J]. Measurement, 2021, 176: 109185. DOI: 10.1016/j.measurement.2021.109185.
[7] Liu R Q, Huang M, Gao Z M, et al. MSC-DNet: An efficient detector with multi-scale context for defect detection on strip steel surface[J]. Measurement, 2023, 209: 112467. DOI: 10.1016/j.measurement.2023.112467.
[8] Zhao W D, Chen F, Huang H C, et al. A new steel defect detection algorithm based on deep learning[J].Computational Intelligence and Neuroscience, 2021, 2021: 5592878. DOI: 10.1155/2021/5592878.
[9] Wang S, Xia X J, Ye L Q, et al. Automatic detection and classification of steel surface defect using deep convolutional neural networks[J].Metals, 2021, 11(3): 388. DOI: 10.3390/met11030388.
[10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[11] Yin Z W, Shao J Y, Zhang N. YOLO-DAW: Object detection model based on dual attention mechanism within windows[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(4): 718-724. DOI:10.3969/j.issn.1001-0505.2023.04.019. (in Chinese)
[12] Yuan T, Zhao X, Liu R, et al. Speed prediction model at urban intersections considering traffic participants[J].Journal of Southeast University(Natural Science Edition), 2023, 53(2): 326-333. DOI:10.3969/j.issn.1001-0505.2023.02.016. (in Chinese)
[13] Zhao C, Shu X, Yan X, et al. RDD-YOLO: A modified YOLO for detection of steel surface defects[J].Measurement, 2023, 214: 112776. DOI: 10.1016/j.measurement.2023.112776.
[14] Guo Z X, Wang C S, Yang G, et al. MSFT-YOLO: Improved YOLOv5 based on transformer for detecting defects of steel surface[J].Sensors, 2022, 22(9): 3467. DOI: 10.3390/s22093467.
[15] Liao D H, Cui Z H, Zhu Z X, et al. A nondestructive recognition and classification method for detecting surface defects of Si3N4 bearing balls based on an optimized convolutional neural network[J]. Optical Materials, 2023, 136: 113401. DOI: 10.1016/j.optmat.2022.113401.
[16] Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. DOI: 10.1109/TPAMI.2019.2938758.
[17] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[18] Rao Y M, Zhao W L, Tang Y S, et al.HorNet: Efficient high-order spatial interactions with recursive gated convolutions[EB/OL].(2022-07-28)[2023-03-18]. http://arxiv.org/abs/2207.14284.pdf.
[19] Zhou X, Hao W J, Bian C G, et al. Detection method for welding defects of YOLOv5 steel pipe based on gnConv and GAM[J]. Microelectronics & Computer, 2023, 40(9): 29-37. DOI:10.19304/J.ISSN1000-7180.2022.0778. (in Chinese)
[20] Chen Y, Zhou F C, Zhang J J, et al. Railway panoramic segmentation based on recursive gating enhancement and pyramid prediction[J/OL].(2023-10-07)[2023-11-11].Journal of Beijing University of Aeronautics and Astronautics. https://bhxb.buaa.edu.cn/bhzk/en/article/doi/10.13700/j.bh.1001-5965.2023.0492. DOI:10.13700/j.bh.1001-5965.2023.0492. (in Chinese)
[21] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. DOI: 10.1609/aaai.v34i07.6999.
[22] Yun S, Han D, Chun S, et al.CutMix: Regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, South Korea, 2019: 6022-6031. DOI: 10.1109/ICCV.2019.00612.