|Table of Contents|

[1] Song Shoupeng, Jia Hui, Chen Dan,. Ultrasonic image artifact removal technique based on SoS kernel [J]. Journal of Southeast University (English Edition), 2024, 40 (1): 80-88. [doi:10.3969/j.issn.1003-7985.2024.01.009]
Copy

Ultrasonic image artifact removal technique based on SoS kernel()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 1
Page:
80-88
Research Field:
Mechanical Engineering
Publishing date:
2024-03-20

Info

Title:
Ultrasonic image artifact removal technique based on SoS kernel
Author(s):
Song Shoupeng Jia Hui Chen Dan
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Keywords:
nondestructive testing ultrasonic image artifact sum of sinc(SoS)kernel defect
PACS:
TH878
DOI:
10.3969/j.issn.1003-7985.2024.01.009
Abstract:
To solve the problem of heavy artifacts in ultrasonic images, a novel ultrasonic imaging method is presented using a sum of sinc(SoS)kernel for eliminating the artifacts caused by the diffusion of isacoustic path, signal tail, or noise simultaneously. First, the envelope of ultrasonic echo is obtained and passed through a SoS kernel, then the signal is sampled at equal intervals determined by the echo signal information degree, and the Fourier transform is applied to the discrete sampling data to obtain the Fourier coefficient sequence. After that, the spectral estimation algorithm is used to estimate the parameters of the ultrasonic echo signal and reconstruct the echo signal using the estimated parameters. Finally, the ultrasonic image is obtained by calculating the acoustic field using the reconstructed echoes. Experimental results show that the image artifacts are effectively removed using focused and straight probes to test straight slot defects and through-hole defects, respectively. Compared with the B-scan images, the peak signal-to-noise ratios reach 24.306, 23.213, 15.074, and 16.444 dB, and the structural similarity indexs are 0.931, 0.932, 0.746, and 0.773, which indicates that the quality of the defect images is greatly improved using the proposed method.

References:

[1] Li Y S, Wang L X. Non-destructive testing personnel: Ultrasonic testing[M]. Beijing: China Machine Press, 2013: 314-316.(in Chinese)
[2] Cheng J M, Gao Y Q, Yan H D, et al. Statistical analysis of nondestructive testing results of cast steel joints in civil engineering structures [J]. Journal of Southeast University(English Edition), 2022, 38(1): 1-8. DOI: 10.3969/j.issn.1003-7985.2022.01.001.
[3] Gan L, Jin H J, Shen Z Z. Influencing factors of characteristic parameters of digital image on concrete surface roughness [J]. Journal of Southeast University(Natural Science Edition), 2022, 53(3): 497-505. DOI:10.3969/j.issn.1001-0505.2022.03.010. (in Chinese)
[4] Hoyle C, Sutcliffe M, Charlton P, et al. Ultrasonic algorithms for calculating probe separation distance, combined with full matrix capture with the total focusing method[J].Insight-Non-Destructive Testing and Condition Monitoring, 2020, 62(4): 199-207. DOI: 10.1784/insi.2020.62.4.199.
[5] Wang P, Liu X G, Li X T, et al. An improved measurement matrix of compressed sensing for synthetic aperture ultrasound imaging[J].Applied Acoustics, 2022, 188: 108592. DOI: 10.1016/j.apacoust.2021.108592.
[6] Wei T, Shuai L G, Zhang Y L. Influence of image data set noise on classification with a convolutional network[J]. Journal of Southeast University(English Edition), 2019, 35(1): 51-56. DOI:10.3969/j.issn.1003-7985.2019.01.008.
[7] Qian Z Y, Wu H, Tang J X. Research review on intelligent methods of advanced ultrasonic technology [J]. Nondestructive Testing Technologying Technology, 2023, 47(4): 1-5. DOI:10.13689/j.cnki.cn21-1230/th.2023.04.003. (in Chinese)
[8] Chen S. Research and implementation of two-dimensional ultrasound imaging system based on sparse array[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.(in Chinese)
[9] Zhou Z G, Peng D, Li Y, et al. Research on phased array ultrasonic total focusing method and its calibration [J].Journal of Mechanical Engineering, 2015, 51(10): 1-7. DOI:10.3901/JME.2015.10.001. (in Chinese)
[10] Jia L C, Chen S L, Bai Z L, et al. Correction model and accelerating algorithm for ultrasonic total focusing method [J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1589-1596. DOI:10.19650/j.cnki.cjsi.2017.07.004. (in Chinese)
[11] Song S P, Chen Y Q. The method of eliminating isoacoustic contour artifacts in ultrasonic total focus method [J]. Journal of Applied Acoustics, 2022, 41(4): 527-534. DOI:10.11684/j.issn.1000-310X.2022.04.004. (in Chinese)
[12] He H L, Fang X Q. Researching on the smearing circuit of ultrasonic[J].Semiconductor Technology, 2005, 30(8): 69-70, 73. DOI:10.3969/j.issn.1003-353X.2005.08.019. (in Chinese)
[13] Iakovleva E, Chatillon S, Bredif P, et al. Multi-mode TFM imaging with artifacts filtering using CIVA UT forwards models[C]// 10th International Conference on Barkhausen and Micro-Magnetics(ICBM). Baltimore, MD, USA, 2014: 72-79. DOI: 10.1063/1.4864804.
[14] Sy K, Bredif P, Iakovleva E, et al. Development of methods for the analysis of multi-mode TFM images [J]. Journal of Physics: Conference Series, 2018, 1017(1): 012005. DOI: 10.1088/1742-6596/1017/1/012005.
[15] Yang G D, Chen W, Zhan H Q, et al. Image denoising for phased array total focusing based on wavelet transform[J].Nondestructive Testing, 2018, 40(8): 53-56. DOI:10.11973/wsjc201808011. (in Chinese)
[16] Potter J N, Wilcox P D, Croxford A J. Diffuse field full matrix capture for near surface ultrasonic imaging [J].Ultrasonics, 2018, 82: 44-48. DOI: 10.1016/j.ultras.2017.07.009.
[17] Zhang C, Huthwaite P, Lowe M. Eliminating backwall effects in the phased array imaging of near backwall defects [J].The Journal of the Acoustical Society of America, 2018, 144(2): 1075-1088. DOI: 10.1121/1.5051641.
[18] Budyn N. On the use of the geometric Median in delay-and-sum ultrasonic array imaging [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(10): 2155-2163. DOI: 10.1109/TUFFC.2020.2993328.
[19] Zheng G R, Zhang H, Li Z, et al. Elimination of ultrasonic tailing based on the superposition method [J]. Journal of Vibration and Shock, 2019, 38(2): 219-225. DOI:10.13465/j.cnki.jvs.2019.02.032. (in Chinese)
[20] Yu J H. Research on hardware implementation method of array ultrasonic signal sparse sampling based on finite rate of innovation[D]. Zhenjiang: Jiangsu University, 2019.(in Chinese)
[21] Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation [J].IEEE Transactions on Signal Processing, 2002, 50(6): 1417-1428. DOI: 10.1109/TSP.2002.1003065.
[22] Tur R, Eldar Y C, Friedman Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J].IEEE Transactions on Signal Processing, 2011, 59(4): 1827-1842. DOI: 10.1109/TSP.2011.2105480.
[23] Yang F, Hu J H, Li S Q. A total least squares reconstruction algorithm of UWB signals based on sub-nyquist sampling [J]. Journal of Electronics & Information Technology, 2010, 32(6): 1418-1422. DOI:10.3724/SP.J.1146.2009.00879. (in Chinese)
[24] Urigüen J A, Eldar Y C, Dragotti P L, et al. Sampling at the rate of innovation: Theory and applications[M]//Compressed Sensing. Cambridge, UK: Cambridge University Press, 2012: 148-209.
[25] Zhang Y, Song L L, Han J F. Research on image fusion and stitching algorithm for UAV aerial images [J]. Journal of Inner Mongolia University of Technology(Natural Science Edition), 2020, 39(4): 265-272. DOI:10.13785/j.cnki.nmggydxxbzrkxb.2020.04.004. (in Chinese)

Memo

Memo:
Biography: Song Shoupeng(1967—), male, doctor, professor, songshoupeng@126.com.
Foundation item: The National Natural Science Foundation of China(No. 52175511).
Citation: Song Shoupeng, Jia Hui, Chen Dan.Ultrasonic image artifact removal technique based on SoS kernel[J].Journal of Southeast University(English Edition), 2024, 40(1):80-88.DOI:10.3969/j.issn.1003-7985.2024.01.009.
Last Update: 2024-03-20