[1] Barreto D, O’Sullivan C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalized stress conditions [J].Granular Matter, 2012, 14: 505-521. DOI: 10.1007/s10035-012-0354-z.
[2] Ochiai H, Lade P V. Three-dimensional behavior of sand with anisotropic fabric [J].Journal of Geotechnical Engineering, 1983, 109(10): 1313-1328. DOI: 10.1061/(ASCE)0733-9410(1983)109:10(1313).
[3] Oda M. The mechanism of fabric changes during compressional deformation of sand [J].Soils and Foundations, 1972, 12(2): 1-18. DOI: 10.3208/sandf1972.12.1.
[4] Wang Q, Lade P V. Shear banding in true triaxial tests and its effect on failure in sand [J].Journal of Engineering Mechanics, 2001, 127(8): 754-761.DOI: 10.1061/(ASCE)0733-9399(2001)127:8(754).
[5] Liang M, Ping H. True triaxial tests and strength characteristics study on silty sand [C] //Proceedings of the 2017 2nd International Conference on Test, Measurement and Computational Method. Beijing, China, 2017: 131-135.
[6] Lade P V, Abelev A V. Effects of cross anisotropy on three-dimensional behavior of sand. Ⅱ: Volume change behavior and failure [J].Journal of Engineering Mechanics, 2003, 129(2): 167-174. DOI: 10.1061/(ASCE)0733-9399(2003)129:2(167).
[7] Sazzad M M, Suzuki K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM [J].Granular Matter, 2013, 15: 583-593. DOI: 10.1007/s10035-013-0422-z.
[8] Huang X, Hanley K J, O’Sullivan C, et al. DEM analysis of the influence of the intermediate stress ratio on the critical-state behavior of granular materials [J].Granular Matter, 2014, 16: 641-655. DOI: 10.1007/s10035-014-0520-6.
[9] Anandarajah A. Critical state of granular materials based on the sliding-rolling theory [J].Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 125-135. DOI: 10.1061/(ASCE)1090-0241(2008)134:1(125).
[10] Tatsuoka F, Sakamoto M, Kawamura T, et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures [J].Soils and Foundations, 1986, 26(1): 65-84. DOI: 10.3208/sandf1972.26.65.
[11] Ng T T. Macro-and micro-behaviors of granular materials under different sample preparation methods and stress paths [J]. International Journal of Solids and Structures, 2004, 41(21): 5871-5884. DOI: 10.1016/j.ijsolstr.2004.05.050.
[12] Lade P V, Nam J, Hong W P. Shear banding and cross-anisotropic behavior observed in laboratory sand tests with stress rotation [J].Canadian Geotechnical Journal, 2008, 45(1): 74-84. DOI: 10.1139/T07-058.
[13] Shi W C, Zhu J G, Chiu C F, et al. Strength and deformation behavior of coarse-grained soil by true triaxial tests [J].Journal of Central South University of Technology, 2010, 17(5): 1095-1102. DOI: 10.1007/s11771-010-0602-5.
[14] Sivathayalan S, Logeswaran P. Experimental assessment of the response of sands under shear-volume coupled deformation [J].Canadian Geotechnical Journal, 2008, 45(9): 1310-1323. DOI: 10.1139/T08-057.
[15] Xiao Y, Sun Y, Liu H, et al. Critical state behaviors of a coarse granular soil under generalized stress conditions [J].Granular Matter, 2016, 18: 1-13. DOI: 10.1007/s10035-016-0623-3.
[16] Abelev A V, Lade P V. Characterization of failure in cross-anisotropic soils [J].Journal of Engineering Mechanics, 2004, 130(5): 599-606. DOI: 10.1061/(ASCE)0733-9399(2004)130:5(599).
[17] Lade P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces [J].International Journal of Solids and Structures, 1977, 13(11): 1019-1035. DOI: 10.1016/0020-7683(77)90073-7.
[18] Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand [J].Soils and Foundations, 1998, 38(3): 179-188. DOI: 10.3208/sandf.38.3_179
[19] Yamada Y, Ishihara K. Undrained deformation characteristics of loose sand under three-dimensional stress conditions [J].Soils and Foundations, 1981, 21(1): 97-107. DOI:10.3208/sandf1972.21.97.
[20] Liu W, Gao Y. Discrete element modeling of migration and evolution rules of coarse aggregates in static compaction [J].Journal of Southeast University(English Edition), 2016, 32: 85-92. DOI: 10.3969/j.issn.1003-7985.2016.01.015.
[21] Xie Y H, Yang Z X, Barreto D, et al. The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials [J].Granular Matter, 2017, 19: 1-13. DOI: 10.1007/s10035-017-0723-8.
[22] Foroutan T, Mirghasemi A A. CFD-DEM model to assess stress-induced anisotropy in undrained granular material [J].Computers and Geotechnics, 2020, 119: 103318. DOI: 10.1016/j.compgeo.2019.103318.
[23] Foroutan T, Mirghasemi A A. Use of CFD-DEM to evaluate the effect of intermediate stress ratio on the undrained behaviour of granular materials [J].Advanced Powder Technology, 2022, 33(3): 103507. DOI: 10.1016/j.apt.2021.11.015.
[24] Lashkari A, Latifi M. A non-coaxial constitutive model for sand deformation under rotation of principal stress axes [J].International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(9): 1051-1086. DOI: 10.1002/nag.659.
[25] Li X S, Dafalias Y F. Anisotropic critical state theory: Role of fabric [J].Journal of Engineering Mechanics, 2012, 138(3): 263-275. DOI: 10.1061/(ASCE)EM.1943-7889.0000324.
[26] Yang Z, Liao D, Xu T. A hypoplastic model for granular soils incorporating anisotropic critical state theory [J].International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 723-748. DOI: 10.1002/nag.3025.
[27] Itasca Consulting Group, Inc. PFC manual, version 5.0 [EB/OL].(2019-06-18)[2024-05-10].http://itascacg.com/software/downloads/pfc-5-00-update.
[28] Cundall P A. A discrete numerical model for granular assemblies [J].Geotechnique, 1979, 29: 47-65. DOI: 10.1680/geot.1979.29.1.47.
[29] Jiang M J, Konrad J M, Leroueil S. An efficient technique for generating homogeneous specimens for DEM studies [J].Computers and Geotechnics, 2003, 30(7): 579-597. DOI: 10.1016/S0266-352X(03)00064-8.
[30] Li X, Yu H S, Li X S. A virtual experiment technique on the elementary behavior of granular materials with discrete element method [J].International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(1): 75-96. DOI: 10.1002/nag.1093.
[31] Wu Q, Yang Z. Unified discrete-element approach applying arbitrary undrained loading paths in element testing for granular soils [J].International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47(1): 3-22. DOI: 10.1002/nag.3458.
[32] Wu Q, Yang Z. Novel undrained servomechanism in discrete-element modeling and its application in multidirectional cyclic shearing simulations [J].Journal of Engineering Mechanics, 2021, 147(3): 04020155. DOI: 10.1061/(ASCE)EM.1943-7889.0001896.
[33] Zhao X L. Analysis of granular assembly deformation using discrete element method [J].Journal of Southeast University(English Edition), 2010, 26(4): 608-613. DOI:10.3969/j.issn.1003-7985.2010.04.022.
[34] Kanatani K I. Distribution of directional data and fabric tensors [J].International Journal of Engineering Science, 1984, 22(2): 149-164. DOI: 10.1016/0020-7225(84)90090-9.