|Table of Contents|

[1] Lü Hongzhan, Yang Hai, Jiang Yu,. MR damping design of the drive joints of the lunar-based extravehicular spacesuit booster mechanism [J]. Journal of Southeast University (English Edition), 2024, 40 (4): 410-416. [doi:10.3969/j.issn.1003-7985.2024.04.010]
Copy

MR damping design of the drive joints of the lunar-based extravehicular spacesuit booster mechanism()
月基舱外航天服助力机构传动 关节磁流变阻尼设计
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 4
Page:
410-416
Research Field:
Other Disciplines
Publishing date:
2024-12-03

Info

Title:
MR damping design of the drive joints of the lunar-based extravehicular spacesuit booster mechanism
月基舱外航天服助力机构传动 关节磁流变阻尼设计
Author(s):
Lü Hongzhan Yang Hai Jiang Yu
College of Mechanical Engineering, Donghua University, Shanghai 201620, China
吕宏展 杨海 江宇
东华大学机械工程学院, 上海 201620
Keywords:
extravehicular spacesuit magnetorheological flexible transmission damping characteristics
舱外航天服 磁流变 柔性传动 阻尼特性
PACS:
V444.3
DOI:
10.3969/j.issn.1003-7985.2024.04.010
Abstract:
Considering the special walking behavior of astronauts on the lunar surface, to reduce the impact on their bones and improve safety during extravehicular operations and walking, a magnetorheological(MR)damping mechanism of power assisted transmission joint used in a new type spacesuit is proposed. In order to improve the damping performance of the MR damper, the influence of the damper’s structural parameters on both the output and dynamic adjustable range of the damping torque is examined. According to the theoretical mechanical model, the output damping torque is calculated, the finite element method is used to conduct numerical tests. At the same time, the structural parameters of the damper are optimized by the response surface methods. The results indicate that the simulated torque aligns with the theoretically designed torque, and the damping characteristics of the optimized structure are effectively improved by the response surface method. Compared with the initial structure, the damping torque is increased by 10.8%, and the dynamic adjustable range is expanded by 52.9%.
针对航天员在月表工作时的特殊行走行为, 为了减少航天员舱外作业及行走时对身体骨骼造成的冲击, 提高航天员月基舱外作业的安全性, 提出了一种应用于新型航天服的助力装置传动关节磁流变阻尼机构.为了提高磁流变阻尼器的阻尼性能, 研究阻尼器结构参数对磁流场中阻尼力矩的输出和动态调节范围的影响, 根据理论力学模型, 计算输出阻尼力矩, 并采用有限元方法进行数值试验;同时, 采用响应面法, 对阻尼器结构参数进行优化.结果表明:仿真力矩达到了设计的理论力矩, 通过响应面优化后的结构, 其阻尼特性得到有效提升;与初始结构相比, 阻尼力矩提高了10.8%, 动态调节范围增大了52.9%.

References:

[1] Holschuh B, Newman D. Extravehicular activity(EVA)[M]//Handbook of Bioastronautics. Cham: Springer International Publishing, 2021:83-90. DOI: 10.1007/978-3-319-12191-8_18.
[2] Villoslada Á, Rivera C, Escudero N, et al. Hand exo-muscular system for assisting astronauts during extravehicular activities[J].Soft Robotics, 2019, 6(1): 21-37. DOI: 10.1089/soro.2018.0020.
[3] Zhou M L, Hou W G, Xu S H. Design and analysis of power assist elbow for EVA spacesuit[J].Applied Mechanics and Materials, 2014, 577: 395-400. DOI: 10.4028/www.scientific.net/amm.577.395.
[4] Saini R S T, Kumar H, Chandramohan S. Optimal design of flow mode semi-active prosthetic knee dampers[J]. Scientia Iranica, 2022, 29(6): 3049-3062. DOI: 10.24200/sci.2022.58926.5971.
[5] Li J H, Zhou W, Deng X X, et al. Magnetorheological dampers optimization based on surrogate model and experimental verification[J]. International Journal of Mechanical Sciences, 2024, 270: 109093. DOI: 10.1016/j.ijmecsci.2024.109093.
[6] Saini R S T, Chandramohan S, Sujatha S, et al. Design of bypass rotary vane magnetorheological damper for prosthetic knee application[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(9): 931-942. DOI: 10.1177/1045389x20942577.
[7] Hu G L, Ying S C, Qi H N, et al. Design, analysis and optimization of a hybrid fluid flow magnetorheological damper based on multiphysics coupling model[J]. Mechanical Systems and Signal Processing, 2023, 205: 110877. DOI: 10.1016/j.ymssp.2023.110877.
[8] Wang J, Liu Y F, Qin Z Y, et al. Dynamic performance of a novel integral magnetorheological damper-rotor system[J]. Mechanical Systems and Signal Processing, 2022, 172: 109004. DOI: 10.1016/j.ymssp.2022.109004.
[9] Wang J, Zhang X N, Liu Y F, et al. Dynamic analysis of magnetorheological damper incorporating elastic ring in coupled multi-physical fields[J].Mechanical Systems and Signal Processing, 2024, 208: 111040. DOI: 10.1016/j.ymssp.2023.111040.
[10] Technical Qualification Appraisal and Evaluation Committee of Non-destructive Testing Personnel in Ordnance Industry. Quick reference manual of magnetic characteristic curve of common steels[M]. Beijing: Machinery Industry Press, 2003: 17.(in Chinese)
[11] Wei L K, Lü H Z, Yang K H, et al. A comprehensive study on the optimal design of magnetorheological dampers for improved damping capacity and dynamical adjustability[J]. Actuators, 2021, 10(3): 64. DOI: 10.3390/act10030064.
[12] Zuo Q, Zhou F, Zheng H, et al. Development and performance evaluation of rotary magnetorheological damper with T-shape rotor for seat suspension[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(12): 563. DOI: 10.1007/s40430-021-03298-6.
[13] Xu F H, Xu Z D. Magnetic circuit analysis on multi-coil magnetorheological damper[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(1): 100-104. DOI:10.3969/j.issn.1001-0505.2016.01.017. (in Chinese)
[14] Xie W X, Liu J P, Li Z, et al. Influence of recycled powders on yield stress of cement paste with superplasticizer and its mechanism[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(4): 567-574. DOI:10.3969/j.issn.1001-0505.2023.04.001. (in Chinese)
[15] Dai J Q, Song A G, Wang A M. Novel magnetorheological fluid damper for passive force/torque feedback[J]. Journal of Southeast University(English Edition), 2007, 23(1): 70-74. DOI: 10.3969/j.issn.1003-7985.2007.01.015.
[16] Gu Y Q. Fluid dynamic seals[M]. Beijing: Sinopec Press, 1990: 31.(in Chinese)
[17] Li J Y. Experimental study on the characteristics of gas-protected jet and rock-breaking[D]. Qingdao: China University of Petroleum, 2008.(in Chinese)
[18] Huang J, Zhang J Q, Yang Y, et al. Analysis and design of a cylindrical magneto-rheological fluid brake[J]. Journal of Materials Processing Technology, 2002, 129(1/2/3): 559-562. DOI: 10.1016/S0924-0136(02)00634-9.
[19] Zhang C J, Chen Z H, Mei Q X, et al. Application of particle swarm optimization combined with response surface methodology to transverse flux permanent magnet motor optimization[J]. IEEE Transactions on Magnetics, 2017, 53(12): 8113107. DOI: 10.1109/TMAG.2017.2749565.

Memo

Memo:
Biography: Lü Hongzhan(1979—), male, doctor, associate professor, lvhz@dhu.edu.cn.
Foundation item: The Natural Science Foundation of Shanghai(No. 20ZR1401300).
Citation: Lü Hongzhan, Yang Hai, Jiang Yu.MR damping design of the drive joints of the lunar-based extravehicular spacesuit booster mechanism[J].Journal of Southeast University(English Edition), 2024, 40(4):410-416.DOI:10.3969/j.issn.1003-7985.2024.04.010.
Last Update: 2024-12-20