|Table of Contents|

[1] SONG Yuda, LI Zuohua, NING Jiafei, SONG Tingsu, et al. Dynamic characteristics and vibration reduction performance of a novel Bi-TRMD [J]. Journal of Southeast University (English Edition), 2025, 41 (2): 147-155. [doi:10.3969/j.issn.1003-7985.2025.02.003]
Copy

Dynamic characteristics and vibration reduction performance of a novel Bi-TRMD()
新型Bi‑TRMD的动力特性与减振性能
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 2
Page:
147-155
Research Field:
Civil Engineering
Publishing date:
2025-06-17

Info

Title:
Dynamic characteristics and vibration reduction performance of a novel Bi-TRMD
新型Bi‑TRMD的动力特性与减振性能
Author(s):
SONG Yuda1,2, LI Zuohua1,2, NING Jiafei1,2, SONG Tingsu3, TENG Jun1,2
1.School of Intelligent Civil and Ocean Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2.Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering, Shenzhen 518055, China
3.Shenzhen Academy of Disaster Prevention and Reduction, Shenzhen 518003, China
宋昱达1,2, 李祚华1,2, 甯家飞1,2, 宋廷苏3, 滕军1,2
1.哈尔滨工业大学(深圳)智能土木与海洋工程学院,深圳 518055
2.广东省土木工程智能韧性结构重点实验室, 深圳 518055
3.深圳防灾减灾技术研究院,深圳 518003
Keywords:
bidirectional tuned rolling mass damper (Bi-TRMD) tuned mass damper (TMD) dynamic characteristics trajectory prediction optimization of vibration reduction parameters vibration reduction performance
Bi‑TRMDTMD动力特性轨迹预测减振参数优化减振性能
PACS:
TU311.3
DOI:
10.3969/j.issn.1003-7985.2025.02.003
Abstract:
A novel bidirectional tuned rolling mass damper (Bi-TRMD) device is proposed, and its dynamic characteristics and vibration reduction performance are investigated. The device achieves the performance goal of bidirectional vibration reduction for a tuned rolling mass damper with a single concave structure. First, the Bi-TRMD device is introduced, and its three-dimensional (3D) mechanical model is established. The motion equations of the model are derived using the Gibbs-Appell equation, and a trajectory prediction method for the sphere and structure within the model is developed. This method demonstrates that the rolling motion of the sphere around orthogonal axes is nearly independent within a limited range, enabling the simplification of the 3D model into a two-dimensional (2D) model. The accuracy of this simplification is validated through case analysis. The vibration reduction parameters are optimized using the 2D model and Den Hartog theory, leading to the derivation of mathematical expressions for the optimal frequency ratio and damping ratio. Subsequently, the bidirectional vibration reduction performance of the Bi-TRMD is analyzed. The results show that under white noise excitation, the Bi-TRMD achieves a bidirectional peak acceleration reduction rate that is 9.92% and 7.79% higher than that of translational tuned mass dampers (TMD) with the same mass. These findings demonstrate that the proposed Bi-TRMD effectively achieves two-directional vibration reduction with a single concave structure, offering superior vibration reduction performance.
提出了一种新型双向滚动式调谐质量阻尼器(Bi‑TRMD)装置,研究了该装置的动力特性与减振性能,实现了滚动式调谐质量阻尼器(TRMD)单凹面双向减振的性能目标。首先,介绍了Bi‑TRMD装置并建立其三维力学模型,基于Gibbs‑Appell方程推导了该模型的运动方程,确立了模型中球体与结构的轨迹预测方法。基于该预测方法揭示了在限定范围内球体绕正交轴近似独立滚动的特性。进而将三维模型简化为二维模型,并以算例分析验证了简化的正确性。基于二维模型和Den Hartog理论优化了减振参数,得到了最优频率比和阻尼比的数学表达式。最后,分析了Bi‑TRMD的双向减振性能。结果显示,在白噪声激励下,与同质量的平动调谐质量阻尼器(TMD)相比,Bi‑TRMD的双向加速度峰值减振率分别提升了9.92%和7.79%,表明所提出Bi‑TRMD可实现单凹面双向减振并具备优越的减振性能。

References:

[1]LIN Y X, XU Z D, WANG H, et al. Analysis of wind vibration response of suspended derrick under downburst[J]. Journal of Southeast University (English Edition), 2023, 39(4): 333-339.
[2]PIRNER M. Actual behaviour of a ball vibration absorber[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(8): 987-1005.
[3]FISCHER O. Wind-excited vibrations—Solution by passive dynamic vibration absorbers of different types[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9/10/11): 1028-1039.
[4]ZHANG Z L, CHEN J B, LI J. Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber[J]. Structure and Infrastructure Engineering, 2014, 10(8): 1087-1100.
[5]CHEN J L, YANG R C. Vibration control of tuned rolling-ball damper in wind turbines[J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1145-1150. (in Chinese)
[6]WANG Y Z, LIU Z Q, MA X Y. Improvement of tuned rolling cylinder damper for wind turbine tower vibration control considering real wind distribution[J]. Renewable Energy, 2023, 216: 119078.
[7]LI S J, FU L M, KONG F. Seismic response reduction of structures equipped with a voided biaxial slab-based tuned rolling mass damper[J]. Shock and Vibration, 2015, 2015: 760394.
[8]SUN L, LI S J, ZHANG F. Effect of self-resetting ball absorber on the mechanical properties of the fabricated structure and its influencing factors: Theory and experimentation[J]. Journal of Vibration Engineering & Technologies, 2022, 10(3): 897-917.
[9]ZHANG J, WANG X Y, WANG W X, et al. Parameter optimization and mitigating performance of single-side pounding tuned rotary mass damper[J]. Noise and Vibration Control, 2022, 42(6): 267-272. (in Chinese)
[10]LI S J, FAN P R, KONG F, et al. Study on a multiple pounding tuned rotary mass damper and its damping performance[J]. Journal of Vibration Engineering, 2023, 36(3): 796-803. (in Chinese)
[11]OBATA M, SHIMAZAKI Y. Optimum parametric studies on tuned rotary-mass damper[J]. Journal of Vibration and Control, 2008, 14(6): 867-884.
[12]XIANG C W, ZHANG X L. Parameter design of double ball dynamic vibration absorber[J]. Machinery Design & Manufacture, 2020(5): 41-44, 49. (in Chinese)
[13]LI H, ZHANG X L, ZHANG K, et al. Optimal parameters design of a ball type dynamic vibration absorber under random excitation[J]. Noise and Vibration Control, 2020, 40(6): 41-45, 72. (in Chinese)
[14]YANG S R, ZHANG X L, DONG Y B, et al. Research on restraint of human arm tremor by ball-type dynamic vibration absorber[J]. Journal of Measurement Science and Instrumentation (English Edition), 2023, 14(4): 425-430.
[15]WANG L K, ZHOU Y, NAGARAJAIAH S, et al. Bi-directional semi-active tuned mass damper for torsional asymmetric structural seismic response control[J]. Engineering Structures, 2023, 294: 116744.
[16]WANG L K, SHI W X, LI X W, et al. An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency[J]. Structural Control and Health Monitoring, 2019, 26(7): e2377.
[17]LI W R, YANG Z, DU Y F. Wind induced vibration mitigation of wind turbine structures with a new bi-directional TMD[J]. Journal of Vibration and Shock, 2021, 40(12): 114-123. (in Chinese)
[18]XIANG Y, TAN P, WU J R, et al. Bi-directional wind-induced vibration control of high-rise buildings using bi-directional rail variable friction pendulum-tuned mass damper[J]. Engineering Structures, 2024, 303: 117557.
[19]NÁPRSTEK J, FISCHER C. Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system[J]. Nonlinear Dynamics, 2020, 99(1): 299-312.
[20]NÁPRSTEK J, FISCHER C. Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system[J]. Nonlinear Dynamics, 2021, 106(3): 1591-1625.
[21]CAO L L, WANG N K, LI A Q. Analysis on coupled vibration of random walking crowd-large span floor and MTMD vibration control[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(3): 463-470. (in Chinese)
[22]HAN Q H, ZHANG X L, LU Y, et al. Analysis on semi-active vibration control of large-span cable dome structures[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(1): 17-24. (in Chinese)
[23]LU Z, WANG Z X, ZHOU Y, et al. Nonlinear dissipative devices in structural vibration control: A review[J]. Journal of Sound and Vibration, 2018, 423: 18-49.
[24]LU Z, LU X L, MASRI S F. Studies of the performance of particle dampers under dynamic loads[J]. Journal of Sound and Vibration, 2010, 329(26): 5415-5433.

Memo

Memo:
Received 2024-08-10,Revised 2024-10-28.
Biographies:Song Yuda (2000—), male, Ph.D. candidate;Ning Jiafei (corresponding author), male, master, assistant researcher, jiafei_ning@163.com.
Foundation items:The National Key Research and Development Program of China (No. 2022YFC3801201), the National Natural Science Foundation of China (No. 51921006,52478505), the Natural Science Foundation of Guangdong Province (No. 2022A1515010403), Shenzhen Collaborative Innovation Project (No. CJGJZD20220517142401002).
Citation:SONG Yuda,LI Zuohua,NING Jiafei,et al.Dynamic characteristics and vibration reduction performance of a novel Bi-TRMD[J].Journal of Southeast University (English Edition),2025,41(2):147-155.DOI:10.3969/j.issn.1003-7985.2025.02.003.DOI:10.3969/j.issn.1003-7985.2025.02.003
Last Update: 2025-06-20