|Table of Contents|

[1] WANG Zhiming, WU Jizhong,. Determining the natural vibration period of towering structure using GNSS precise point positioning [J]. Journal of Southeast University (English Edition), 2025, 41 (2): 199-206. [doi:10.3969/j.issn.1003-7985.2025.02.009]
Copy

Determining the natural vibration period of towering structure using GNSS precise point positioning()
利用GNSS精密单点定位技术测定高耸结构的自振周期
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 2
Page:
199-206
Research Field:
Civil Engineering
Publishing date:
2025-06-17

Info

Title:
Determining the natural vibration period of towering structure using GNSS precise point positioning
利用GNSS精密单点定位技术测定高耸结构的自振周期
Author(s):
WANG Zhiming1, WU Jizhong2
1.Architectural Design and Research Institute Co., Ltd., Southeast University, Nanjing 210096, China
2.School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China
王志明1, 吴继忠2
1.东南大学建筑设计研究院有限公司,南京 210096
2.南京工业大学测绘科学与技术学院,南京 211816
Keywords:
towering structure natural vibration period precise point positioning frequency domain decomposition
高耸结构自振周期精密单点定位频域分解
PACS:
TU973.3
DOI:
10.3969/j.issn.1003-7985.2025.02.009
Abstract:
This study explores the use of the Global Navigation Satellite System (GNSS) precise point positioning (PPP) technology to determine the natural vibration periods of towering structures through simulations and field testing. During the simulation phase, a GNSS receiver captured vibration waveforms generated by a single-axis motion simulator based on preset signal parameters, analyzing how different satellite system configurations affect the efficiency of extracting vibration parameters. Subsequently, field tests were conducted on a high-rise steel single-tube tower. The results indicate that in the simulation environment, no matter the PPP positioning data under single GPS or multisystem combination, the vibration frequency of single-axis motion simulator can be accurately extracted after frequency domain analysis, with multisystem setups providing more precise amplitude parameters. In the field test, the natural vibration periods of the main vibration modes of high-rise steel single-tube tower measured by PPP technology closely match the results of the first two modes derived from finite element analysis. The first mode period calculated by the empirical formula is approximately 6% higher than those determined through finite element analysis and PPP. This study demonstrates the potential of PPP for structural vibration analysis, offering significant benefits for assessing dynamic responses and monitoring the health of towering structures.
为验证GNSS精密单点定位(PPP)技术测定高耸结构自振周期的可行性,设计并实施了模拟实验与现场实测。在模拟实验阶段,采用GNSS接收机捕获由单向振动台实验系统依据预设参数产生的振动波形,评估了不同卫星系统配置对振动参数提取的效能影响,随后对高耸钢结构单管塔进行了实地测试。结果表明,在模拟环境中,无论是单一GPS系统还是多系统组合下的PPP定位数据,经频域分析后均能精确提取单向振动台的振动频率,但多系统组合方案可以获取精度更高的振幅参数。在实地测试环节,采用PPP技术测定的钢结构圆管单管塔主要振动模态的自振周期与有限元分析前2阶模态的结果吻合较好,经验公式计算的第一阶模态周期比前2种方法高出约6%,证实了PPP是一种可行的结构振动分析工具,对高耸结构的动态响应评估和健康监测具有重要意义。

References:

[1]LU Z, YAN D Y, ZHOU M Y, et al. Vulnerability analysis of a complex super high-rise connected structure under the combined action of earthquake and wind[J]. Journal of Southeast University (English Edition), 2024, 40(1): 13-23.
[2]HUANG R X, LI A Q, ZHANG Z Q,et al.TMD vibration control of Beijing Olympic Center Broadcast Tower under fluctuating wind load [J]. Journal of Southeast University (Natural Science Edition), 2009,39(3):519-524.(in Chinese)
[3]ZHOU Y, MENG J, LIN Y H, et al. A study on the formula of fundamental period of high-rise shear wall structures based on ambient vibration testing[J]. Structures, 2024, 64: 106622.
[4]ZHANG J Y, HU T. Numerical simulation and specification comparison of downwind wind load of single tube tower[J]. Special Structures, 2019, 36(6): 108-114. (in Chinese)
[5]ZHANG D L, BHATTARAI H B, WANG F, et al. Dynamic characteristics of segmental assembled HH120 wind turbine tower[J]. Engineering Structures, 2024, 303: 117438.
[6]SHI W X, SHAN J Z, LU X L. Modal identification of Shanghai World Financial Center both from free and ambient vibration response[J]. Engineering Structures, 2012, 36: 14-26.
[7]HE L Q, HUANG J Z, EDWIN R. Ambient vibration tests and modal identification of environmental vibration of two high-rise structures based on RSV-150 laser sensing vibrometer [J]. Building Structure,2019,49(22):130-134. (in Chinese)
[8]PAN T C, GOH K S, MEGAWATI K. Empirical relationships between natural vibration period and height of buildings in Singapore[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(3): 449-465.
[9]SHEN P S, ZHANG C, YE J Y, et al. Fundamental natural period of high-rise and super high-rise buildings in China [J]. Building Structure, 2014,44(18): 1-3. (in Chinese)
[10]WANG Z H, YI W J, WANG M F. Statistical analysis of natural vibration period of high-rise and super high-rise concrete and steel-reinforced concrete mixed structures in China[J]. Building Structure, 2018, 48(3): 85-89. (in Chinese)
[11]RUGGIERI S, FIORE A, UVA G. A new approach to predict the fundamental period of vibration for newly-designed reinforced concrete buildings[J]. Journal of Earthquake Engineering, 2022, 26(13): 6943-6968.
[12]TANG Z R, CHEN H F, SUN B T, et al. Study on empirical formulas and distribution ranges of vibration periods in high-rise reinforced concrete constructions[J]. Journal of Earthquake Engineering, 2023, 27(9): 2506-2532.
[13]WAN J W, LI Q S, HAN X L, et al. Investigation of structural responses and dynamic characteristics of a supertall building during Typhoon Kompasu[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 230: 105209.
[14]VAZQUEZ B G E, GAXIOLA-CAMACHO J R, BENNETT R, et al. Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology[J]. Measurement, 2017, 110: 146-153.
[15]QUESADA-OLMO N, JIMENEZ-MARTINEZ M J, FARJAS-ABADIA M. Real-time high-rise building monitoring system using global navigation satellite system technology[J]. Measurement, 2018, 123: 115-124.
[16]GÓRSKI P. Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition[J]. Engineering Structures, 2017, 148: 277-292.
[17]XI R J, CHEN H, MENG X L, et al. Reliable dynamic monitoring of bridges with integrated GPS and BeiDou[J]. Journal of Surveying Engineering, 2018, 144(4): 04018008.
[18]FANG R X, LÜ H H, SHU Y M, et al. Improved performance of GNSS precise point positioning for high-rate seismogeodesy with recent BDS-3 and Galileo[J]. Advances in Space Research, 2021, 68(8): 3255-3267.
[19]YIGIT C O, EL-MOWAFY A, ANIL DINDAR A, et al. Investigating performance of high-rate GNSS-PPP and PPP-AR for structural health monitoring: Dynamic tests on shake table[J]. Journal of Surveying Engineering, 2021, 147(1): 05020011.
[20]YU W K, PENG H, PAN L, et al. Performance assessment of high-rate GPS/BDS precise point positioning for vibration monitoring based on shaking table tests[J]. Advances in Space Research, 2022, 69(6): 2362-2375.
[21]HU J H, ZHANG X H, LI P, et al. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University[J]. GPS Solutions, 2019, 24(1): 15.
[22]PAN Y X, GENG J H, LIU K, et al. Evaluation of rapid phase clock/bias products for PPP ambiguity resolution and its application to the M7.1 2019 Ridgecrest, California earthquake[J]. Advances in Space Research, 2020, 65(11): 2586-2594.
[23]PETIT G, LUZUM B. IERS conventions[M]. Frankfurt am Main, Germany: Verlag des Bundesamts für Kartographie und Geodäsie, 2010:123-131.
[24]WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Manuscripta Geodaetica, 1993, 18(2): 91-98.
[25]WANG Y Z, CHEN X, LIU P L. Statistical multipath model based on experimental GNSS data in static urban canyon environment[J]. Sensors, 2018, 18(4): 1149.
[26]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Load code for the design of building structures: GB 50009—2012[S]. Beijing: China Architecture & Building Press, 2012.

Memo

Memo:
Received 2024-10-21,Revised 2024-12-10.
Biographies:Wang Zhiming (1970—), male, doctor, senior engineer, wangzhiming@adriseu.com;Wu Jizhong(corresponding author), male, doctor, associate professor, jzwu@njtech.edu.cn.
Foundation item:The National Natural Science Foundation of China (No.41974214).
Citation:WANG Zhiming,WU Jizhong.Determining the natural vibration period of towering structure using GNSS precise point positioning[J].Journal of Southeast University (English Edition),2025,41(2):199-206.DOI:10.3969/j.issn.1003-7985.2025.02.009.DOI:10.3969/j.issn.1003-7985.2025.02.009
Last Update: 2025-06-20