|Table of Contents|

[1] Ma LiWang ZhigongXu Jian,. A signal-summing programmable gain amplifier employingbinary-weighted switching and constant-gm bias [J]. Journal of Southeast University (English Edition), 2017, 33 (2): 134-139. [doi:10.3969/j.issn.1003-7985.2017.02.002]
Copy

A signal-summing programmable gain amplifier employingbinary-weighted switching and constant-gm bias()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 2
Page:
134-139
Research Field:
Circuit and System
Publishing date:
2017-06-30

Info

Title:
A signal-summing programmable gain amplifier employingbinary-weighted switching and constant-gm bias
Author(s):
Ma LiWang ZhigongXu Jian
Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China
Keywords:
programmable gain amplifier variable gain amplifier signal-summing topology constant-gm
PACS:
TN43
DOI:
10.3969/j.issn.1003-7985.2017.02.002
Abstract:
A novel programmable gain amplifier(PGA)based on a signal-summing topology is proposed. Different from conventional signal-summing variable gain amplifiers(VGA), a binary-weighted switching technique is employed to vary the current-steering transistors’ aspect ratio to change their transconductance, and hence, an accurate gain step size of 6 dB is achieved. The constant-gm biasing technique and the matching of the transistors and resistors ensures that the gain of the proposed topology is independent of the variation of process, voltage and temperature(PVT). P-well NMOS(N-metal oxide semiconductor)transistors are utilized to eliminate the influence of back-gate effect which will induce gain error. The source-degeneration technique ensures good linearity performance at a low gain. The proposed PGA is fabricated in a 0.18 μm CMOS(complementary metal oxide semiconductor)process. The measurement results show a variable gain ranging from 0 to 24 dB with a step size of 6 dB and a maximum gain error of 0.3 dB. A constant 3 dB bandwidth of 210 MHz is achieved at different gain settings. The measured output 3rd intercept point(OIP3)and minimum noise figure(NF)are 20.9 dBm and 11.1 dB, respectively. The whole PGA has a compact layout of 0.068 mm2. The total power consumption is 4.8 mW under a 1.8 V supply voltage.

References:

[1] Chen J, Shi B. Circuit design of an on-chip temperature-compensated constant transconductance reference [J]. Analog Integrated Circuits and Signal Processing, 2003, 37(3):215-222.DOI: 10.1023/A:1026221809719.
[2] Chen Z, Zheng Y, Choong F C, et al. A low-power variable-gain amplifier with improved linearity: Analysis and design [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2012, 59(10):2176-2185.DOI:10.1109/tcsi.2012.2185331.
[3] Chu C, Wang Y. A PVT-independent constant-Gm bias technique based on analog computation[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2014, 61(10):768-772. DOI:10.1109/tcsii.2014.2345296.
[4] Duong QH, Le Q, Kim CW, et al. A 95 dB linear low-power variable gain amplifier [J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2006, 53(8):1648-1657.DOI: 10.1109/TCSI.2006.879058.
[5] Elwan H, Tekin A, Pedrotti K. A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2009, 44(9):2503-2514.DOI:10.1109/jssc.2009.2021446.
[6] Han X, Yuan H M, Pang X M. Design and implementation of an improved constant-Gm bias circuit [C]//8th IEEE Conference on Industrial Electronics and Applications. Melbourne, Australia, 2013:839-842.
[7] Hsu C C, Wu J T. A highly linear 125 MHz CMOS switched-resistor programmable-gain amplifier [J]. IEEE Journal of Solid-State Circuits, 2003, 38(10):1663-1670. DOI:10.1109/jssc.2003.817665.
[8] Lee H D, Lee K A, Hong S. A wideband CMOS variable gain amplifier with an exponential gain control [J]. IEEE Transactions on Microwave Theory & Techniques, 2007, 55(6):1363-1373. DOI:10.1109/tmtt.2007.896787.
[9] Kang S Y, Jang J, Oh I Y, et al. A 2.16 mW low power digitally-controlled variable gain amplifier [J]. IEEE Microwave and Wireless Components Letters, 2010, 20(3):172-174. DOI:10.1109/lmwc.2010.2040222.
[10] Khoury J M. On the design of constant settling time AGC circuits [J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1998, 45(3):283-294. DOI:10.1109/82.664234.
[11] Lerstaveesin S, Gupta M, Kang D, et al. A 48-860 MHz CMOS low-IF direct-conversion DTV tuner [J]. IEEE Journal of Solid-State Circuits, 2008, 43(9):2013-2024.DOI:10.1109/JSSC.2008.2001900.
[12] Nguyen H H, Lee J S, Lee S G. A binary-weighted switching and reconfiguration-based programmable gain amplifier [J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2009, 56(9):699-703.DOI:10.1109/TCSII.2009.2027958.
[13] Talebbeydokhti N, Hanumolu P K, Kurahashi P, et al. Constant transconductance bias circuit with an on-chip resistor [C]//IEEE International Symposium on Circuits and Systems. Island of Kos, Greece, 2006:2857-2860.
[14] Tsou S C, Li C F, Huang P C. A low-power CMOS linear-in-decibel variable gain amplifier with programmable bandwidth and stable group delay [J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2006, 53(12):1436-1440. DOI:10.1109/tcsii.2006.885399.
[15] Zhang X, Mirabbasi S, Lampe L. A temperature-stable 60 dB programmable-gain amplifier in 0.13 μm CMOS[C]//IEEE International Symposium on Circuits and Systems. Rio de Janeiro, Brazil, 2011:1009-1012.

Memo

Memo:
Biographies: Ma Li(1989—), male, doctor; Wang Zhigong(corresponding author), male, doctor, professor, zgwang@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.61306069).
Citation: Ma Li, Wang Zhigong, Xu Jian. A signal-summing programmable gain amplifier employing binary-weighted switching and constant-gm bias[J].Journal of Southeast University(English Edition), 2017, 33(2):134-139.DOI:10.3969/j.issn.1003-7985.2017.02.002.
Last Update: 2017-06-20