|Table of Contents|

[1] Wang Wei, Zhang Jinghao, Cheng Ming,. A generic PWM strategy for multi-leg VSI-fed machine drives [J]. Journal of Southeast University (English Edition), 2017, 33 (2): 189-195. [doi:10.3969/j.issn.1003-7985.2017.02.011]
Copy

A generic PWM strategy for multi-leg VSI-fed machine drives()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 2
Page:
189-195
Research Field:
Computer Science and Engineering
Publishing date:
2017-06-30

Info

Title:
A generic PWM strategy for multi-leg VSI-fed machine drives
Author(s):
Wang Wei Zhang Jinghao Cheng Ming
School of Electrical Engineering, Southeast University, Nanjing 210096, China
Keywords:
pulse width modulation(PWM) multi-leg voltage-source-inverter(VSI) carrier-based PWM machine drives
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2017.02.011
Abstract:
A generic pulse width modulation(PWM)strategy is proposed for the multi-leg voltage source inverter(VSI). First, the multi-leg VSI is modeled, which is independent from the load structure. Secondly, the proposed PWM strategy is deduced by inverting the mathematical model of the multi-leg VSI. According to the relationship between the leg number of VSIs and the phase number of electrical machines, the multi-leg VSI-fed machine drives are classified into two types: matched and unmatched applications. The leg numbers of VSIs and the phase number of electrical machines are equal in matched applications while they are different in unmatched applications. The existing PWM strategies cannot be directly used for both matched and unmatched applications. However, the proposed PWM strategy can be general for both matched and unmatched applications, and no modifications are required. The effectiveness of the proposed PWM strategy is verified by experimental results.

References:

[1] Seok J K, Kim S. Hexagon voltage manipulating control(HVMC)for AC motor drives operating at voltage limit[J]. IEEE Transactions on Industry Applications, 2015, 51(5): 3829-3837. DOI:10.1109/tia.2015.2416125.
[2] Alexandrou A D, Adamopoulos N K, Kladas A G. Development of a constant switching frequency deadbeat predictive control technique for field-oriented synchronous permanent-magnet motor drive[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 5167-5175. DOI:10.1109/TIE.2016.2559419.
[3] Wang W, Cheng M, Wang Y, et al. A novel energy management strategy of onboard supercapacitor for subway applications with permanent magnet traction system[J]. IEEE Transactions on Vehicular Technology, 2014, 63(6): 2578-2588. DOI:10.1109/tvt.2013.2293707.
[4] Cheng M, Hua W, Zhang J Z, et al. Overview of stator-permanent magnet brushless machines[J]. IEEE Transactions on Industrial Electronics, 2011, 58(11): 5087-5101. DOI:10.1109/tie.2011.2123853.
[5] Smith A N, Gadoue S M, Finch J W. Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives[J]. IEEE Transactions on Energy Conversion, 2016, 31(1): 270-282. DOI:10.1109/tec.2015.2480961.
[6] Sahoo S K, Bhattacharya T. Field weakening strategy for a vector-controlled induction motor drive near the six-step mode of operation[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 3043-3051. DOI:10.1109/TPEL.2015.2451694.
[7] Zhou K L, Wang D W. Relationship between space-vector modulation and three-phase carrier-based PWM: A comprehensive analysis[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1): 186-196. DOI:10.1109/41.982262.
[8] Lee C H T, Chau K T, Liu C. Design and analysis of a cost-effective magnetless multiphase flux-reversal DC-field machine for wind power generation[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1565-1573. DOI:10.1109/tec.2015.2443155.
[9] Immovilli F, Bianchini C, Lorenzani E et al. Evaluation of combined reference frame transformation for interturn fault detection in permanent-magnet multiphase machines[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1912-1920. DOI:10.1109/tie.2014.2348945.
[10] Mohammadpour A, Parsa L. Global fault-tolerant control technique for multiphase permanent-magnet machines[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 178-186. DOI:10.1109/TIA.2014.2326084.
[11] Chen X, Wang J, Patel V I, et al. A nine-phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for electric vehicle applications[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 860-871. DOI:10.1109/tec.2016.2538321.
[12] Cheng M, Yu F, Chau K T, et al. Dynamic performance evaluation of a nine-phase flux-switching permanent-magnet motor drive with model predictive control[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4539-4549. DOI:10.1109/tie.2016.2547858.
[13] Guzman H, Barrero F, Duran M J. IGBT-gating failure effect on a fault-tolerant predictive current-controlled five-phase induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 15-20. DOI:10.1109/tie.2014.2331019.
[14] Lopez O, Dujic D, Jones M, et al. Multidimensional two-level multiphase space vector PWM algorithm and its comparison with multifrequency space vector PWM method[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 465-475. DOI:10.1109/tie.2010.2047826.
[15] Charumit C, Kinnares V. Discontinuous SVPWM techniques of three-leg VSI-fed balanced two-phase loads for reduced switching losses and current ripple[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2191-2204. DOI:10.1109/tpel.2014.2326773.
[16] Kumsuwan Y, Premrudeepreechacharn S, Kinnares V. A carrier-based unbalanced PWM method for four-leg voltage source inverter fed unsymmetrical two-phase induction motor[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 2031-2041. DOI:10.1109/TIE.2012.2228138.
[17] Kinnares V, Charumit C. Modulating functions of space vector PWM for three-leg VSI-fed unbalanced two-phase induction motors[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 1135-1139. DOI:10.1109/tpel.2008.2011906.
[18] Jones M, Vukosavic S N, Dujic D, et al. Five-leg inverter PWM technique for reduced switch count two-motor constant power applications[J]. IET Electric Power Applications, 2008, 2(5): 275-287. DOI:10.1049/iet-epa:20070497.
[19] Delarue P, Bouscayrol A, Semail E. Generic control method of multi-leg voltage-source-converters for fast practical implementation[J]. IEEE Transactions on Power Electronics, 2003, 18(2): 517-526. DOI:10.1109/tpel.2003.809349.
[20] Wang W, Cheng M, Zhang B, et al. A fault-tolerant permanent-magnet traction module for subway applications[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1646-1658. DOI:10.1109/tpel.2013.2266377.
[21] Jacobina C B, dos Santos E C, da Silva E R C, et al. Reduced switch count multiple three-phase AC machine drive systems[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 966-976. DOI:10.1109/tpel.2007.915027.
[22] Ojo O, Gan D. Generalized discontinuous carrier-based PWM modulation scheme for multi-phase converter-machine systems[C]//IEEE Fourtieth IAS Annual Meeting. Hong Kong, China, 2005: 1374-1381.

Memo

Memo:
Biography: Wang Wei(1985—), male, doctor, lecturer, wangwei1986@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51607038), the Natural Science Foundation of Jiangsu Province(No.BK20160673), the National Basic Research Program of China(973 Program)(No.2013CB035603), China Postdoctoral Science Foundation(No.2015M581697, 2016T90401).
Citation: Wang Wei, Zhang Jinghao, Cheng Ming.A generic PWM strategy for multi-leg VSI-fed machine drives[J].Journal of Southeast University(English Edition), 2017, 33(2):189-195.DOI:10.3969/j.issn.1003-7985.2017.02.011.
Last Update: 2017-06-20