|Table of Contents|

[1] Geng Yanfen, Mao Jiandong, Wang Zhili, Guo Huaqiang, et al. Analysis of interaction between surface and sewer pipe systembased on computational fluid dynamics [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 198-205. [doi:10.3969/j.issn.1003-7985.2020.02.010]
Copy

Analysis of interaction between surface and sewer pipe systembased on computational fluid dynamics()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
198-205
Research Field:
Other Disciplines
Publishing date:
2020-06-20

Info

Title:
Analysis of interaction between surface and sewer pipe systembased on computational fluid dynamics
Author(s):
Geng Yanfen1 Mao Jiandong1 Wang Zhili2 Guo Huaqiang1
1School of Transportation, Southeast University, Nanjing 211189, China
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, China
Keywords:
computational fluid dynamics(CFD) exchange flow rate urban flood model weir and orifice formula
PACS:
TV131.2;U611
DOI:
10.3969/j.issn.1003-7985.2020.02.010
Abstract:
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole, a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model. The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-ε model for turbulence processes, and the volume of fluid(VOF)method for capturing the free surface. The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations, showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case. Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe. The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows, which can provide much clearer details of the interaction process.

References:

[1] Zhang J Y, Song X M, Wang G Q, et al. Development and challenges of urban hydrology in a changing environment: Ⅰ: Hydrological response to urbanization[J]. Advances in Water Science, 2014, 25(4): 594-605. DOI:10.14042/j.cnki.32.1309.2014.04.020. (in Chinese)
[2] Vojinovic Z, Tutulic D. On the use of 1D and coupled 1D-2D modelling approaches for assessment of flood damage in urban areas[J]. Urban Water Journal, 2009, 6(3): 183-199. DOI:10.1080/15730620802566877.
[3] Fraga I, Cea L, Puertas J. Validation of a 1D-2D dual drainage model under unsteady part-full and surcharged sewer conditions[J]. Urban Water Journal, 2017, 14(1): 74-84. DOI:10.1080/1573062x.2015.1057180.
[4] Pan A J, Hou A Z, Tian F Q, et al. Hydrologically enhanced distributed urban drainage model and its application in Beijing City[J]. Journal of Hydrologic Engineering, 2012, 17(6): 667-678. DOI:10.1061/(asce)he.1943-5584.0000491.
[5] Jang J H, Chang T H, Chen W B. Effect of inlet modelling on surface drainage in coupled urban flood simulation[J].Journal of Hydrology, 2018, 562: 168-180. DOI:10.1016/j.jhydrol.2018.05.010.
[6] Chen A S, Leandro J, Djordjevi S. Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-D wave dual drainage simulations[J]. Urban Water Journal, 2016, 13(8): 830-840. DOI:10.1080/1573062x.2015.1041991.
[7] Hsu M, Chen S, Chang T. Inundation simulation for urban drainage basin with storm sewer system[J].Journal of Hydrology, 2000, 234(1/2): 21-37. DOI:10.1016/s0022-1694(00)00237-7.
[8] Rossman L A. Storm water management model user’s manual, Version 5.0. U.S. Environ. Prot. Agency [EB/OL].(2010)[2020-03-21]. https://doi.org/PNR61.
[9] Mignot E, Paquier A, Haider S. Modeling floods in a dense urban area using 2D shallow water equations[J]. Journal of Hydrology, 2006, 327(1/2): 186-199. DOI:10.1016/j.jhydrol.2005.11.026.
[10] Djordjevi S, Prodanovi D, Maksimovi. An approach to simulation of dual drainage[J]. Water Science and Technology, 1999, 39(9): 95-103. DOI:10.2166/wst.1999.0451.
[11] Schmitt T, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology, 2004, 299(3/4): 300-311. DOI:10.1016/s0022-1694(04)00374-9.
[12] Djordjevi S, Prodanovi D, Maksimovi, et al. SIPSON-simulation of interaction between pipe flow and surface overland flow in networks[J]. Water Science and Technology, 2005, 52(5): 275-283. DOI:10.2166/wst.2005.0143.
[13] Nasello C, Tucciarelli T. Dual multilevel urban drainage model[J]. Journal of Hydraulic Engineering, 2005, 131(9): 748-754. DOI:10.1061/(asce)0733-9429(2005)131:9(748).
[14] Chang T J, Wang C H, Chen A S. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas[J].Journal of Hydrology, 2015, 524: 662-679. DOI:10.1016/j.jhydrol.2015.03.014.
[15] Abbasizadeh H, Nazif S, Hosseini S A, et al. Development of a coupled model for simulation of urban drainage process based on cellular automata approach[J]. Irrigation and Drainage, 2018, 67(2): 269-281. DOI:10.1002/ird.2186.
[16] Li D M, Wang X, Xie Y Y, et al. A multi-level and modular model for simulating the urban flooding and its application to Tianjin City[J]. Natural Hazards, 2016, 82(3): 1947-1965. DOI:10.1007/s11069-016-2279-z.
[17] Bazin P H, Nakagawa H, Kawaike K, et al. Modeling flow exchanges between a street and an underground drainage pipe during urban floods[J]. Journal of Hydraulic Engineering, 2014, 140(10): 04014051. DOI:10.1061/(asce)hy.1943-7900.0000917.
[18] Hakiel J, Szydowski M. Interaction between storm water conduit flow and overland flow for numerical modelling of urban area inundation[M]//Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces. Cham, Switzerland: Springer International Publishing, 2016: 23-34. DOI:10.1007/978-3-319-27750-9_3.
[19] Rubinato M, Shuksimth J, Saul A. Experimental investigation of flow-interactions between above and below ground drainage systems through a manhole [R/OL]. CUNY Academic Works, 2014. http://academicworks.cuny.edu/cc_conf_hic/14.
[20] Rubinato M, Lee S, Martins R, et al. Surface to sewer flow exchange through circular inlets during urban flood conditions[J]. Journal of Hydroinformatics, 2018, 20(3): 564-576. DOI:10.2166/hydro.2018.127.
[21] Rubinato M, Martins R, Kesserwani G, et al. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions[J]. Journal of Hydrology, 2017, 552: 421-432. DOI:10.1016/j.jhydrol.2017.06.024.
[22] Djordjevi S, Saul A J, Tabor G R, et al. Experimental and numerical investigation of interactions between above and below ground drainage systems[J]. Water Science and Technology, 2013, 67(3): 535-542. DOI:10.2166/wst.2012.570.
[23] Fach S, Sitzenfrei R, Rauch W. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation[J]. Water Science and Technology, 2009, 60(12): 3035-3043. DOI:10.2166/wst.2009.752.
[24] Lopes P, Leandro J, Carvalho R F, et al. Numerical and experimental investigation of a gully under surcharge conditions[J]. Urban Water Journal, 2015, 12(6): 468-476. DOI:10.1080/1573062x.2013.831916.
[25] Beg M N A, Carvalho R F, Leandro J. Effect of surcharge on gully-manhole flow[J]. Journal of Hydro-Environment Research, 2018, 19: 224-236. DOI:10.1016/j.jher.2017.08.003.
[26] Leandro J, Lopes P, Carvalho R, et al. Numerical and experimental characterization of the 2D vertical average-velocity plane at the center-profile and qualitative air entrainment inside a gully for drainage and reverse flow[J]. Computers & Fluids, 2014, 102: 52-61. DOI:10.1016/j.compfluid.2014.05.032.
[27] Mohsin M, Kaushal D R. 3D CFD validation of invert trap efficiency for sewer solid management using VOF model[J]. Water Science and Engineering, 2016, 9(2): 106-114. DOI:10.1016/j.wse.2016.06.006.
[28] Patankar S, Spalding D. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. DOI:10.1016/0017-9310(72)90054-3.

Memo

Memo:
Biography: Geng Yanfen(1978—), female, doctor, associate professor, yfgeng@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51979040).
Citation: Geng Yanfen, Mao Jiandong, Wang Zhili, et al. Analysis of interaction between surface and sewer pipe system based on computational fluid dynamics[J].Journal of Southeast University(English Edition), 2020, 36(2):198-205.DOI:10.3969/j.issn.1003-7985.2020.02.010.
Last Update: 2020-06-20