|Table of Contents|

[1] Ma Wenjie, Wang Binglong, Wang Xu, et al. Prediction of a maximum pull-out load of anchor boltsusing an optimal combination model [J]. Journal of Southeast University (English Edition), 2021, (2): 199-208. [doi:10.3969/j.issn.1003-7985.2021.02.010]

Prediction of a maximum pull-out load of anchor boltsusing an optimal combination model()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Research Field:
Civil Engineering
Publishing date:


Prediction of a maximum pull-out load of anchor boltsusing an optimal combination model
Ma Wenjie1 2 Wang Binglong1 2 Wang Xu3 Wang Bolin3
1Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
2Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China
3School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
anchor bolt maximum pull-out load mixed model of improved exponential and power function(MIEPF)model unequal interval gray GM(1 1)model optimal combination model
The mixed model of improved exponential and power function and unequal interval gray GM(1, 1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts. An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function. Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones. Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve. Its accuracy and stable reliability, as well as its prediction capability classification, were better than those of the other prediction models. Therefore, the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data.


[1] Ozhan H O, Guler E. Critical tendon bond length for prestressed ground anchors in pullout performance tests conducted in sand[J]. International Journal of Civil Engineering, 2018, 16(10): 1329-1340. DOI:10.1007/s40999-017-0261-0.
[2] Zhang N, Matthew Evans T, Zhao S W, et al. Discrete element method simulations of offshore plate anchor keying behavior in granular soils[J].Marine Georesources & Geotechnology, 2020, 38(6): 716-729. DOI:10.1080/1064119X.2019.1614705.
[3] Su W Z, Fragaszy R J. Uplift testing of model anchors[J]. Journal of Geotechnical Engineering, 1988, 114(9): 961-983. DOI:10.1061/(asce)0733-9410(1988)114: 9(961).
[4] Littlejohn S, Mothersille D. Maintenance and monitoring of anchorages: Guidelines[J]. Proceedings of the Institution of Civil Engineers—Geotechnical Engineering, 2008, 161(2): 93-106. DOI:10.1680/geng.2008.161.2.93.
[5] Kono K, Nakahashi A, Fukagawa R. Calculation formula for pullout resistance[J]. International Journal of Geomate, 2019, 16(58): 110-115. DOI: 10.21660/2019. 58.8181.
[6] Hofmann J, Welz G. Load-bearing behaviour and characteristic load-bearing capacity of injection anchors in masonry[J]. Mauerwerk, 2017, 21(6): 369-384. DOI:10.1002/dama.201700019.
[7] Sun X Y, Zhang T, Wang M M, et al. A method for predicting bearing capacity of anchor bolt based on modified D-S evidence theory[J]. Rock and Soil Mechanics, 2015, 36(12): 3556-3566. DOI:10.16285/j.rsm.2015.12.028. (in Chinese)
[8] Sun X Y, Zhang T, Wang M M, et al. A revised model for predicting the bearing capacity of rock bolts based on mixed exponential and power function[J]. Journal of Rock Mechanics and Engineering, 2014, 34(8): 1641-1649. DOI:10.13722/j.cnki.jrme.2014.1106. (in Chinese)
[9] Xu M, Zhang Y X, Yin K. Prediction of ultimate bearing capacity of anchor rod by artificial neural network[J]. Journal of Rock Mechanics and Engineering, 2002, 21(5): 755-758. DOI:10.3321/j.issn:1000-6915.2002.05.032. (in Chinese)
[10] Liu M G. The prediction method of ultimate resistance capacity of bolt base on gray theory[J]. Journal of Underground Space and Engineering, 2006, 2(6): 1044-1048. DOI:10.3969/j.issn.1673-0836.2006.06.035. (in Chinese)
[11] Xue X H, Zhang W H, Liu H J. Estimation of bearing capacity of bolts based on genetic neural network[J]. Journal of Engineering Geology, 2006, 14(2): 249-252. DOI:10.3969/j.issn.1004-9665.2006.02.019. (in Chinese)
[12] Ying Z M, Zhang J, Shang Y Q. Exponential model for simulating load-displacement curve of anchor rod[J]. Rock and Soil Mechanics, 2005, 26(8): 1331-1334. DOI:10.3969/j.issn.1000-7598.2005.08.028. (in Chinese)
[13] Zhao M H, Zhang T X, Zou X J. Analysis of anti-pull-force for anchored bars in retaining structures[J]. Central South Highway Engineering, 2003, 28(4): 4-7. DOI:10.3969 /j.issn.1674-0610.2003.04.002. (in Chinese)
[14] Gurung N. A theoretical model for anchored geosynthetics in pull-out tests[J]. Geosynthetics International, 2000, 7(3): 269-284. DOI:10.1680/gein.7.0175.
[15] Jiang J P, Gao G Y, Liu W B. Modified hyperbolic model describing Q-s curves of squeezed branch pile[J]. Journal of Basic Science and Engineering, 2010, 18(6): 999-1009. DOI:10.3969/j.issn.1005-0930.2010.06.015. (in Chinese)
[16] Bai P, Wei Q, Wang N. Research on ultimate uplift capacity of tension piles of uniform section based on prediction of power function model[J]. Grain Distribution Technology, 2010(6): 9-13. DOI:10.3969/j.issn.1007-3582.2010.06.003. (in Chinese)
[17] Kuang Z, Zhang M Y, Bai X Y. Load-bearing characteristics of fibreglass uplift anchors in weathered rock[J]. Proceedings of the Institution of Civil Engineers—Geotechnical Engineering, 2020, 173(1): 49-57. DOI:10.1680/jgeen.18.00195.
[18] Deng J L. Control problems of grey systems[J]. Systems and Control Letters, 1982, 1(5): 288-294. DOI:10.1016/S0167-6911(82)80025-X.
[19] Yin K D, Geng Y, Li X M. Improved grey prediction model based on exponential grey action quantity[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 560-570. DOI:10.21629/JSEE.2018.03.13.
[20] Li Y, Wang J Q, Wu J. Model calibration concerning risk coefficients of driving safety field model[J].Journal of Central South University, 2017, 24(6): 1494-1502. DOI:10.1007/s11771-017-3553-2.
[21] Tang X W. Optimal combination prediction method and its application[J]. Statistics and Management, 1992, 11(1): 31-35. DOI:10.13860/j.cnki.sltj.1992.01.007. (in Chinese)
[22] Makridakis S. Accuracy measures: Theoretical and practical concerns[J]. International Journal of Forecasting, 1993, 9(4): 527-529. DOI:10.1016/0169-2070(93)90079-3.
[23] Niroumand H, Kassim K A. Pullout capacity of irregular shape anchor in sand[J]. Measurement, 2013, 46(10): 3876-3882. DOI:10.1016/j.measurement.2013.07.042.
[24] Wang X N, Ye R, Zhou F J. Proposals for the selection of failure criteria in soil float-resisting anchor rod test[J]. Geological hazards and Environmental Protection, 2001, 12(3): 73 - 77. DOI:10.3969/j.issn.1006-4362.2001.03. 017. (in Chinese)
[25] Zhang M Y, Zheng C, Bai X Y, et al. Experimental study on anchorage characteristics of GFRP and steel anti-floating anchor embedded in foundation slab[J]. Journal of Basic Science and Engineering, 2019, 27(4): 931-946. DOI:10.16058/j.issn.1005-0930.2019.04.020. (in Chinese)


Biographies: Ma Wenjie(1993—), male, Ph.D. candidate; Wang Binglong(corresponding author), male, doctor, professor, wangbl8@163.com.
Foundation item: The National Natural Science Foundation of China(No. 51778485).
Citation: Ma Wenjie, Wang Binglong, Wang Xu, et al. Prediction of a maximum pull-out load of anchor bolts using an optimal combination model[J].Journal of Southeast University(English Edition), 2021, 37(2):199-208.DOI:10.3969/j.issn.1003-7985.2021.02.010.
Last Update: 2021-06-20