|Table of Contents|

[1] Liu Xinjie, Wang Lifeng,. Vibration analysis of circular Janus MoSSe plates [J]. Journal of Southeast University (English Edition), 2023, 39 (3): 225-232. [doi:10.3969/j.issn.1003-7985.2023.03.002]
Copy

Vibration analysis of circular Janus MoSSe plates()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 3
Page:
225-232
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2023-09-20

Info

Title:
Vibration analysis of circular Janus MoSSe plates
Author(s):
Liu Xinjie Wang Lifeng
State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Keywords:
Janus monolayer molybdenum sulfoselenide(MoSSe) molecular dynamics(MD) warpage natural frequency
PACS:
O327
DOI:
10.3969/j.issn.1003-7985.2023.03.002
Abstract:
The vibration behavior of Janus monolayer molybdenum sulfoselenide(MoSSe)was studied based on molecular dynamics(MD)simulations and the finite element method(FEM). MoSSe plates were simulated by FEM through the incorporation of intrinsic strain caused by lattice mismatch to the double-layer plate model. The vibrations of circular MoSSe plates with free boundaries and a clamped edge were determined by MD simulations and FEM. In addition, the effects of plate size, strain, and pressure on the natural frequency of the plates were investigated. The results showed that the natural frequency of the circular MoSSe plate with free boundaries gradually decreased with increasing plate size. Furthermore, a significant discontinuity in frequency was observed due to bowl and tube warpage when the diameter reached 8.6 nm. The MD simulation and FEM calculation results were consistent in terms of the natural frequencies of the circular MoSSe plates of different sizes. In addition, the effects of strain and pressure on the natural frequency determined by the two methods were consistent for small deformations. The vibration of the MoSSe plate could be well predicted by the double-layer plate model.

References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896.
[2] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. DOI: 10.1126/science.1157996.
[3] Galashev A Y, Vorob’ev A S. An ab initio study of the interaction of graphene and silicene with one-, two-, and three-layer planar silicon carbide[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138: 115120. DOI: 10.1016/j.physe.2021.115120.
[4] Yan J W, Zhu J H, Li C, et al. Decoupling the effects of material thickness and size scale on the transverse free vibration of BNNTs based on beam models[J]. Mech Syst Signal Pr, 2022, 166:108440. DOI: 10.1016/j.ymssp.2021.108440.
[5] Yan J W, Zhang W, Lai S K, et al. Large amplitude vibration and bistable jump of functionally graded graphene-platelet reinforced porous composite plates[J/OL]. Waves in Random and Complex Media.(2022-11-12)[2023-04-08]. https://doi.org/10.1080/17455030.2022.2141915.
[6] Wu J W, Tao Y, Chen C, et al. Molecular dynamics simulations of strain-dependent thermal conductivity of single-layer black phosphorus[J]. Journal of Southeast University(English Edition), 2018, 34(1): 43-47. DOI: 10.3969/j.issn.1003-7985.2018.01.007.
[7] Chen C, Chen Y F, Sha J J, et al. Molecular dynamics simulation of ion transportation through graphene nanochannels[J]. Journal of Southeast University(English Edition), 2017, 33(2): 171-176. DOI: 10.3969/j.issn.1003-7985.2017.02.008.
[8] Yan J W, Zhang W. An atomistic-continuum multiscale approach to determine the exact thickness and bending rigidity of monolayer graphene[J]. Journal of Sound and Vibration, 2021, 514: 116464. DOI: 10.1016/j.jsv.2021.116464.
[9] Deng S, Li L, Li M. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 101: 44-49. DOI: 10.1016/j.physe.2018.03.016.
[10] Song Z, Schultz T, Ding Z, et al. Electronic properties of a 1D intrinsic/p-doped heterojunction in a 2D transition metal dichalcogenide semiconductor[J]. ACS Nano, 2017, 11(9): 9128-9135. DOI: 10.1021/acsnano.7b03953.
[11] Wierzbowski J, Klein J, Sigger F, et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit[J]. Scientific Reports, 2017, 7: 12383. DOI: 10.1038/s41598-017-09739-4.
[12] Najam F, Tan M L P, Ismail1 R, et al. Two-dimensional(2D)transition metal dichalcogenide semiconductor field-effect transistors: The interface trap density extraction and compact model[J]. Semiconductor Science and Technology, 2015, 30: 075010. DOI: 10.1088/0268-1242/30/7/075010.
[13] Salih E, Ayesh A I. First principle study of transition metals codoped MoS2 as a gas sensor for the detection of NO and NO2 gases[J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 131: 114736. DOI: 10.1016/j.physe.2021.114736.
[14] Xiong Q L, Kitamura T, Li Z H. Crystal orientation-dependent mechanical property and structural phase transition of monolayer molybdenum disulfide[J]. Journal of Applied Physics, 2017, 122: 135105. DOI: 10.1063/1.4996941.
[15] Yasaei P, Foss C J, Karis K, et al. Interfacial thermal transport in monolayer MoS2- and graphene-based devices[J]. Advanced Materials Interfaces, 2017, 4(17): 1700334. DOI: 10.1002/admi.201700334.
[16] Nguyen C V, Hieu N N, Poklonski N A, et al. Magneto-optical transport properties of monolayer MoS2 on polar substrates[J]. Physical Review B, 2017, 96(12): 125411. DOI: 10.1103/PhysRevB.96.125411.
[17] Zhang Y Q, Wang L F, Jiang J N. Thermal vibration of MoS2/black phosphorus bi-layered heterostructure[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113597. DOI: 10.1016/j.physe.2019.113597.
[18] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. DOI: 10.1126/science.aac9439.
[19] Lu A Y, Zhu H Y, Xiao J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12: 744-749. DOI: 10.1038/nnano.2017.100.
[20] Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides[J]. ACS Nano, 2017, 11(8): 8192-8198. DOI: 10.1021/acsnano.7b03186.
[21] Idrews M, Din H U, Ali R, et al. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures[J]. Physical Chemistry Chemical Physics, 2019, 21: 18612-18621. DOI: 10.1039/c9cp02648g.
[22] Dong L, Lou J, Shenoy V B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides[J]. ACS Nano, 2017, 11(8): 8242-8248. DOI: 10.1021/acsnano.7b03313.
[23] Kandemir A, Peeters F M, Sahin H. Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via vibrational spectrum[J].The Journal of Chemical Physics, 2018, 149: 084707. DOI: 10.1063/1.5043207.
[24] Pham K D, Hieu N N, Phuc H V, et al. First principles study of the electronic properties and schottky barrier in vertically stacked graphene on the Janus MoSeS under electric field[J]. Computational Materials Science, 2018, 153: 438-444. DOI: 10.1016/j.commatsci.2018.07.017.
[25] Jiang S W, Shi S, Wang X F. Nanomechanics and vibration analysis of graphene sheets via a 2D plate model[J]. J Phys D: Appl Phys, 2014, 47(4): 045104. DOI: 10.1088/0022-3727/47/4/045104.
[26] Akg�F6;z B, Civalek �D6;. Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory[J]. Materials & Design, 2012, 42: 164-171. DOI: 10.1016/j.matdes.2012.06.002.
[27] Kitipornchai S, He X Q, Liew K M. Continuum model for the vibration of multilayered graphene sheets[J]. Phys Rev B, 2005, 72: 075443. DOI: 10.1103/PhysRevB.72.075443.
[28] Zhang Z Y, Lan L, Wang Y F, et al. Vibration frequency analysis of rippled single-layered graphene sheet: Toward the nano resonant devices design[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113580. DOI: 10.1016/j.physe.2019.113580.
[29] Zhang Y Q, Wang L F, Jiang J N. Thermal vibration of rectangular single-layered black phosphorus predicted by orthotropic plate model[J]. Journal of Applied Physics, 2018, 123: 095101. DOI: 10.1063/1.5016374.
[30] Yi J P, Wang L F, Zhang Y Q. Vibration of two-dimensional hexagonal boron nitride[J]. Theoretical and Applied Mechanics Letters, 2018, 8(6): 408-414. DOI: 10.1016/j.taml.2018.06.003.
[31] Zhang Y Q, Wang L F. Thermal vibration of circular single-layered MoS2 predicted by the circular Mindlin plate model[J]. AIP Advances, 2021, 11(2): 025328. DOI: 10.1063/5.0038066.
[32] Jiang J W. Misfit strain induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study[J]. Acta Mech Solida Sinica, 2019, 32: 17-28. DOI: 10.1007/s10338-018-0049-z.
[33] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1-19. DOI: 10.1006/jcph.1995.1039.
[34] Peelaers H, van de Walle C G. Elastic constants and pressure-induced effects in MoS2[J]. The Journal of Physical Chemistry C, 2014, 118(22): 12073-12076. DOI: 10.1021/jp503683h.
[35] Kandemir1 A, Yapicioglu H, Kinaci A, et al. Thermal transport properties of MoS2 and MoSe2 monolayers[J]. Nanotechnology, 2016, 27(5): 055703. DOI: 10.1088/0957-4484/27/5/055703.
[36] Vora A M. Effect of indium intercalation on various properties of MoSe2 single crystals[J]. Cryst Res Technol, 2007, 42(3): 286-289. DOI: 10.1002/crat.200610814.
[37] Hashemi Z, Rafiezadeh S, Hafizi R, et al. First-principles study of MoS2 and MoSe2 nanoclusters in the framework of evolutionary algorithm and density functional theory[J]. Chemical Physics Letters, 2018, 698: 41-50. DOI: 10.1016/j.cplett.2018.03.008.
[38] Xiong Q L, Zhou J, Zhang J, et al. Spontaneous curling of freestanding Janus monolayer transition-metal dichalcogenides[J]. Phys Chem Chem Phys, 2018, 20(32): 20988-20995. DOI: 10.1039/C8CP02011F.
[39] Ye H, Zhang Y Z, Wei A R, et al. Intrinsic-strain-induced curling of free-standing two-dimensional Janus MoSSe quantum dots[J]. Applied Surface Science, 2020, 519: 146251. DOI: 10.1016/j.apsusc.2020.146251.

Memo

Memo:
Biographies: Liu Xinjie(1998—), male, Ph. D. candidate; Wang Lifeng(corresponding author), male, doctor, professor, walfe@nuaa.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 51921003), the National Science Fund for Distinguished Young Scholars(No. 11925205).
Citation: Liu Xinjie, Wang Lifeng. Vibration analysis of circular Janus MoSSe plates[J].Journal of Southeast University(English Edition), 2023, 39(3):225-232.DOI:10.3969/j.issn.1003-7985.2023.03.002.
Last Update: 2023-09-20