|Table of Contents|

[1] Yang Wenqiang*, Jia Zhengchun, Xu Qiang,. Speed Sensorless Vector Control of Induction MotorBased on Reduced Order Extended Kalman Filter [J]. Journal of Southeast University (English Edition), 2001, 17 (1): 41-45. [doi:10.3969/j.issn.1003-7985.2001.01.010]
Copy

Speed Sensorless Vector Control of Induction MotorBased on Reduced Order Extended Kalman Filter()
基于降阶推广卡尔曼滤波器的异步电机 无速度传感器矢量控制
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
17
Issue:
2001 1
Page:
41-45
Research Field:
Electrical Engineering
Publishing date:
2001-06-30

Info

Title:
Speed Sensorless Vector Control of Induction MotorBased on Reduced Order Extended Kalman Filter
基于降阶推广卡尔曼滤波器的异步电机 无速度传感器矢量控制
Author(s):
Yang Wenqiang* Jia Zhengchun Xu Qiang
Department of Electrical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
杨文强 贾正春 许强
华中科技大学电力工程系, 武汉 430074
Keywords:
extended Kalman filter flux estimation speed estimation speed sensorless vector control induction motor
推广卡尔曼滤波器 磁链估计 速度估计 无速度传感器矢量控制 异步电机
PACS:
TM921
DOI:
10.3969/j.issn.1003-7985.2001.01.010
Abstract:
A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced-order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.
提出一种估计异步电机转子速度和转子磁链的新型降阶推广卡尔曼滤波器算法, 建立了基于此算法的异步电机无速度传感器矢量控制系统.以转子磁链的两个分量为状态变量, 被估计的参数转子速度作为扩充状态变量, 构成三阶推广卡尔曼滤波器算法, 算法阶数的降低明显地减少了运算量, 适合实时实现.仿真结果显示转子速度和转子磁链的估计精度高, 系统的速度控制性能令人满意, 证明此算法有效可行.

References:

[1] H. Nakano, and I. Takahashi, Sensorless field oriented control of an induction motor using an instantaneous slip frequency estimation method, PESC, pp.847-854, 1988
[2] C.Schader, Adaptive speed identification for vector control of induction motor without rotational transducers, IEEE IAS Annu. Meet. Conf. Rec., pp. 177-183, 1987
[3] D.J. Atkinson, P. P. Acarney, and J. W. Finch, Parameter identification techniques for induction motor drives, European Power Electron. Conf., Aachen, Germany, pp.307-312, 1989
[4] G. Henneberger, B. J. Brunsbach, and Th. Klepsch, Field oriented control of synchronous and asynchronous drives without mechanical sensors using a Kalman filter, European Power Electron. Conf., Firenze, Italy, pp. 664-671, 1991
[5] Young-Real Kim, Seung-Ki Sul, and Min-Ho Park, Speed Sensorless Vector Control of Induction Motor Using Extended Kalman Filter, IEEE Trans. Ind. Applicat., vol. 30, no.5, pp.1225-1233, 1994
[6] R. G. Brown, and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Wiley, New York, 1992
[7] T. W. Rowan, and R. J. Kerkman, A new synchronous current regulator and analysis of current regulated PWM inverters, IEEE Trans. Industry Applicat., vol. IA-22, pp. 678-690, 1986

Memo

Memo:
* Born in 1968, male, graduate.
Last Update: 2001-03-20