|Table of Contents|

[1] Zhao Ling, Li Aiqun,. Strength of circular concrete columns under concentric compression [J]. Journal of Southeast University (English Edition), 2003, 19 (1): 74-78. [doi:10.3969/j.issn.1003-7985.2003.01.017]
Copy

Strength of circular concrete columns under concentric compression()
圆柱体钢筋混凝土柱的轴压强度
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 1
Page:
74-78
Research Field:
Civil Engineering
Publishing date:
2003-03-30

Info

Title:
Strength of circular concrete columns under concentric compression
圆柱体钢筋混凝土柱的轴压强度
Author(s):
Zhao Ling Li Aiqun
College of Civil Engineering, Southeast University, Nanjing 210096, China
赵玲 李爱群
东南大学土木工程学院, 南京 210096
Keywords:
columns high strength concrete hoop spacing concentric loading
高强混凝土 箍筋间距 轴向荷载
PACS:
TU375
DOI:
10.3969/j.issn.1003-7985.2003.01.017
Abstract:
An experimental study, in which six columns were loaded concentrically to investigate the behavior of reinforced normal strength and high strength circular columns under concentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa. The primary variables considered were the concrete strength and the amount of transverse reinforcement. Test results indicate that smaller hoop spacing provides higher column capacity and greater strength enhancement in a confined concrete core of columns. For the same lateral confinement, high strength concrete columns develop lower strength enhancement than normal strength concrete columns. Both the strength enhancement ratio (f ′cc/f ′co)and the column capacity ratio(Ptest/Po)were observed to show linear increase variations with ρsfyt/f ′c in circular columns.
通过对6根圆柱体钢筋混凝土柱的轴压试验, 研究普通及高强混凝土柱的轴向受压性能.柱的混凝土强度为30 MPa和60 MPa.所考虑的主要因素为混凝土强度和箍筋用量.试验结果表明, 箍筋间距越小, 则柱承载能力越高, 混凝土核心约束强度提高幅度越大.在相同的侧向约束下, 高强混凝土柱的核心强度提高幅度低于普通混凝土柱.混凝土核心约束强度与非约束强度比率(fcc′ /fco′)及柱承载能力试验值与理论值之比(Ptest/Po

References:

[1] Razvi S R, Saatcioglu M. Circular high-strength concrete columns under concentric compression [J]. ACI Structural Journal, 1999, 96(5): 817-825.
[2] Mander J B, Priesley M J N, Park R. Observed stress-strain behavior of confined concrete [J]. Journal of Structural Engineering, ASCE, 1988, 114(8):1827-1849.
[3] Foster S J, Attard M M. Ductility and strength in HSC columns [A]. In:Engineering Foundation Conference on High Strength Concrete[C]. Hawaii, 1997. 13-17.
[4] Saatcioglu M, Razvi S. Strength and ductility of confined concrete [J]. Journal of Structural Engineering, ASCE, 1992, 118(6):1590-1607.
[5] Razvi S R, Saatcioglu M. Strength and deformability of confined high strength concrete columns [J]. ACI Structural Journal, 1994, 91(6): 678-687.
[6] Sugano S, Nagashima T, Kimura H, et al. Experimental studies on seismic behavior of reinforced concrete members of high strength concrete [A]. In: Utilization of High Strength Concrete-Second International Symposium[C]. Detroit: American Concrete Institute, 1990. 61-87.

Memo

Memo:
Biographies: Zhao Ling(1963—), female, graduate;Li Aiqun(corresponding author), male, doctor, professor, aiqunli@public1.ptt.js.cn.
Last Update: 2003-03-20