|Table of Contents|

[1] Zhang Hui, Ling Weiye, Jiang Shouwei,. Influence of laser treatment on the fatigue of notched bar [J]. Journal of Southeast University (English Edition), 2003, 19 (2): 142-145. [doi:10.3969/j.issn.1003-7985.2003.02.009]
Copy

Influence of laser treatment on the fatigue of notched bar()
激光处理对切口棒料疲劳性能的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 2
Page:
142-145
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-06-30

Info

Title:
Influence of laser treatment on the fatigue of notched bar
激光处理对切口棒料疲劳性能的影响
Author(s):
Zhang Hui1 Ling Weiye2 Jiang Shouwei1
1School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
2Department of Mechanical Engineering, Southeast University, Nanjing 210096, China
张辉1 凌维业2 蒋寿伟1
1上海交通大学机械工程学院, 上海 200030; 2东南大学机械工程系, 南京 210096
Keywords:
laser treatment notch extremely low cycle fatigue hardened area
激光处理 切口 超低周疲劳 硬化区
PACS:
O346.2
DOI:
10.3969/j.issn.1003-7985.2003.02.009
Abstract:
Fatigue cutting is a new approach for separating material. Man-made fatigue can be realized by applying a rotating bending load to a notched bar. To better utilize the new method, laser treatment is adopted in this study. After laser radiation at the notch root, the fatigue cycle of the bar drops dramatically. Based on the experimental result, we draw the conclusion that the fatigue of the bar is influenced by the shape of the hardened area. A hardened area that has a small axial dimension and a relatively large radial dimension facilitates the fatigue. The desirable hardened area can be obtained by controlling the laser treatment parameters.
疲劳断料是一种新的分离材料方法.通过对棒料进行切口并施加旋弯载荷, 可人为制造疲劳.为了进一步提高断裂的效率, 采用激光对棒料切口的根部进行了处理, 处理后的棒料疲劳周次大大降低.通过分析实验结果得到:棒料的疲劳受硬化区形状影响, 具有较小轴向尺寸和较大径向尺寸的硬化区会促进疲劳.硬化区的形状可以通过调整激光处理参数来控制.

References:

[1] Lukas P, Klesnil M. Fatigue limit of notched bodies [J]. Mater Sci Engng, 1978, 34(1):61-66.
[2] Lukas P, Kunz L, Weiss B, et al. Notch size effect in fatigue [J]. Fat Fract Engng Mater Struct, 1989, 12(3): 175-186.
[3] Chapetti M D, Kitano T, Tagawa T, et al. Fatigue limit of blunt-notched components [J]. Fat Fract Engng Mater Struct, 1998, 21(12): 1525-1536.
[4] Bentachfine S, Pluvinage G, Gilgert J, et al. Notch effect in low cycle fatigue [J]. Int J Fatigue, 1999, 21(5): 421-430.
[5] Chapetti M D, Katsura N, Tagawa T, et al. Static strengthening and fatigue blunt-notch sensitivity in low-carbon steels [J]. Int J Fatigue, 2001, 23(3): 207-214.
[6] Atzori B, Lazzarin P, Filippi S. Cracks and notches: analogies and differences of the relevant stress distributions and practical consequences in fatigue limit predictions [J]. Int J Fatigue, 2001, 23(4):355-362.
[7] Li Y T, Rui Z Y, Huang J L. An inverse fracture problem of a shear specimen with double cracks [J]. Key Engng Mater, 2000, 183(1): 37-42.
[8] Wei Y B, Jin W Y, Lang F Y. Experimental analysis of stress shearing [J]. J Gansu Univ Tech, 1996, 22(3): 86-89.(in Chinese)
[9] Dempsey J P, Adamson R M. Fracture analysis of base-edge-cracked reverse-tapered plates [J]. Int J Fract, 1995, 69(4): 281-294.
[10] Jiliang D, Tsyrjang C, Yenhung T. Effect of laser surface hardening on fatigue crack growth rate in AISI-4130 steel [J]. Engng Fract Mech, 1989, 33(3): 483-491.
[11] Rawers J C. Laser-glazing low carbon iron fracture samples [J]. J Mater Sci, 1985, 20(6): 1929-1933.
[12] Zhu Q Y. Laser precise machining[M]. Beijing: China Machine Press, 1990. 207-211.(in Chinese)
[13] Li Z Z. Laser surface hardening[M]. Beijing: China Machine Press, 1992. 63-74.(in Chinese)

Memo

Memo:
Biographies: Zhang Hui(1974—), male, doctor; Jiang Shouwei(corresponding author), male, professor, jiang650@sina.com.
Last Update: 2003-06-20